فایل بای | FileBuy

مرجع خرید و دانلود گزارش کار آموزی ، گزارشکار آزمایشگاه ، مقاله ، تحقیق ، پروژه و پایان نامه های کلیه رشته های دانشگاهی

فایل بای | FileBuy

مرجع خرید و دانلود گزارش کار آموزی ، گزارشکار آزمایشگاه ، مقاله ، تحقیق ، پروژه و پایان نامه های کلیه رشته های دانشگاهی

بررسی عایق های مایع در برق قدرت

این پروژه که تحت عنوان عایق مایع در برق قدرت می باشد از سه فصل تشکیل یافته است که در طول این فصل ضمن آشنایی شما با عایق های مایع و انواع آنها شما را با چگونگی کاربرد و خصوصیات فیزیکی این عایق ها آشنا می سازیم در فصل اول تحت عنوان گروه بندی عایق های مایع شما را با انواع عایق های مایع و گروه بندی این عایق ها آشنا کرده و ضمن آشنایی هر چه بیشتر با
دسته بندی برق
فرمت فایل doc
حجم فایل 6087 کیلو بایت
تعداد صفحات فایل 269
بررسی عایق های مایع در برق قدرت

فروشنده فایل

کد کاربری 8044

چکیده:

این پروژه که تحت عنوان عایق مایع در برق قدرت می باشد از سه فصل تشکیل یافته است که در طول این فصل ضمن آشنایی شما با عایق های مایع و انواع آنها شما را با چگونگی کاربرد و خصوصیات فیزیکی این عایق ها آشنا می سازیم.

در فصل اول تحت عنوان گروه بندی عایق های مایع شما را با انواع عایق های مایع و گروه بندی این عایق ها آشنا کرده و ضمن آشنایی هر چه بیشتر با این گونه عایق ها شما را با خواص فیزیکی و شیمیایی این عایق ها آشنا می کنیم.

در فصل دوم که تحت عنوان خصوصیات فیزیکی و شیمیایی عایق های مایع می باشد ضمن آشنایی شما با خصوصیات فیزیکی و شیمیایی این عایق ها و ضمن آشنایی هر چه بیشنر با این گونه عایق ها با روغن های این عایق و خصوصیات فیزیکی و شیمیایی و خواص الکتریکی این عایق آشنا می شوید.

در فصل سوم که تحت عنوان شکست در عایق های مایع ضمن آشنایی با شکست در این گونه عایق و نظریه های مربوط به این شکست در این عایق ها با نظریه های شکست و همچنین با توجه به نظریه های شکست به ترکیب عایق مایع و جامد پرداخته و شما را هر چه بیشتر با شکست عایق های مایع آشنا می سازد ودر انتها به نتیجه گیری مباحث مربوطه دراین سه فصل پرداخته می شود.


مقدمه:

با توجه به افزایش روز افزون میزان تولید انرژی الکتریکی توسط نیروگاه ها، اهمیت انتقال انرژی از طریق خطوط انتقال با ولتاژهای بسیار بالا روز به روز افزایش می یابد؛ به گونه ای که ولتاژ خطوط فشار قوی از مرز هزار کیلوولت گذشته است و روند این افزایش با سرعت زیادی انجام می گردد. بدین منظور برای دانشجویان مهندسی برق مناسب و ضروری است تا با مسائل مربوط به ولتاژهای فشار قوی آشنا شده، پشتوانه مناسبی در زمینه مهندسی فشار قوی داشته باشند. البته همیشه علم مهندسی فشار قوی درگیر با مسایل عایق کاری بوده است؛ زیرا با افزایش سطح ولتاژ، مسائل عایق کاری تجهیزات فشار قوی از اهمیت بسیار زیادی برخوردار خواهد بود. بالطبع با افزایش سطح ولتاژ، خصوصیات انواع عایقهای بکار رفته، مسائل میدانهای الکتریکی، شکست الکتریکی عایقها و دیگر موارد مرتبط با آن ها، جایگاه خاص و مهمی را بخود اختصاص می دهد.

همچنین مباحث فیزیک و تکنولوژی عایق های الکتریکی بر روی اصول متعددی استوار شده است. این اصول مربوط به علوم فیزیک، مکانیک، شیمی و ریاضی است، بنابراین آسان می توان پذیرفت که این رشته از مهندسی برق از اهمیت ویژه ای برخوردار است.

پیدایش و تکامل انواع عایقهای الکتریکی، چه برای مهندسی الکترونیک و چه برای مهندسی الکتروتکنیک پس از جنگ جهانی دوم از چنان سرعتی برخوردار بوده است که شناسایی و کاربرد صحیح آنها برای مهندسین متخصص نیز خالی از دشواری نبوده است. به ویژه ساخت و تهیه عایقهای ترکیبات کربنی از راه مصنوعی که در بیست سال اخیر سیلی از انواع عایقها با خواص ممتاز و کاربردی وسیع را برای ساختمان دستگاه ها و ماشین های الکتریکی عرضه داشته است که طبیعی است بالا بردن بیشتر سطح آگاهی مهندسین برق را در این زمینه الزام آور می سازد.

بدون شک، تکامل صنعت عایقسازی، بویژه پس از جنگ جهانی دوم، سهم بسزایی در تحقق یافتن پیشرفتهای الکترونیک در سال های اخیر داشته است. تنها موفقیتهای چند ساله اخیر، در زمینه ساختن عایقهای مصنوعی، نشانه بارزی از کوشش های همه جانبه ای است که همه دانشمندان علوم مهندسی برای امکان دادن به استفاده بیشتر از نیروی برق، در زمینه های مختلف، آغاز کرده اند.

وظیفه اصلی عایقهای الکتریکی عبارتست از عایق کردن دو یا چند هادی که تحت فشارهای الکتریکی مختلفی قرار گرفته باشند، نسبت به یکدیگر و یا نسبت به زمین.

از عایقهای الکتریکی، خصوصیات دیگری نیز، از قبیل مقاومت در برابر مواد شیمیایی و مقاومت در مقابل حرارت، مورد انتظار است تا آنکه تلفات ناشی از حرارت در آنها در حداقل باقی بماند. در کنار این خصوصیات، عایقها باید دارای خواص الکتریکی متعدد دیگری نیز باشند. این خواص در درجه اول عبارتند از:

1- قابلیت هدایت الکتریکی در حداقل ممکن

2- تلفات محدود انرژی، آنگاه که عایق در یک میدان الکتریکی واقع می گردد.

3- دارا بودن عدد عایقی بزرگ

4- استقامت الکتریکی قابل توجه

پیشرفت و تکامل عایقهای الکتریکی در سی سال اخیر، با تهیه و ساختن عایقهای جدید و با بهتر کردن خواص عایقهای موجود، بسیار جالب توجه بوده است.

در شرایطی که از ولتاژ فشار قوی استفاده می شود، طراحی دقیق سیستم عایقی از اهمیت زیادی برخوردار است. به همین منظور از عایق های مختلفی از قبیل گازها، جامدات و مایعات و ایجاد خلاء و یا ترکیبی از آنها استفاده می شود. برای صرفه جویی و اطمینان از انجام موفق کارها باید دانش مربوط به عوامل فساد عایق و نیز عواملی را که باعث کاهش ولتاژ شکست و از بین رفتن عایق می شوند، در طراحی مورد توجه قرار داد. وظیفه عایق ها، ایزولاسیون (جداسازی الکتریکی) ولتاژهای فشار قوی نسبت به یکدیگر و همچنین نسبت به زمین می باشد، تا هم ولتاژ و هم جریان فشار قوی در مسیر مربوط به خود قرار گیرند و هم از بروز خسارت و ضرر و زیان به افراد و تجهیزات جلوگیری شود. عایق ایده آل (طبق تعریف) یک نارسانای جریان الکتریسیته است که هیچ جریان الکتریکی را از خود عبور نمی دهد؛ ولی عملاً هیچ ماده ای را در طبیعت نمی توان یافت که ویژگی یک عایق ایده آل را داشته باشد. اما برای استفاده های کاربردی، یک عایق، ماده ای است که عبور جریان از خود را در حد بسیار کم و مطلوبی محدود نماید؛ به حدی که بتوان از آن صرفنظر کرد. به عبارت دیگر، در ولتاژهای عادی، مقاومت الکتریکی عایق خیلی زیاد است. اگر ولتاژهای بسیار بالا از عایق، جریان قابل ملاحظه ای عبور کند. در حقیقت، عایق دیگر خاصیت عایقی خود را از دست داده، دچار شکست الکتریکی می شود؛ به عبارت دیگر؛ عایق تبدیل به هادی می شود. قبل از بروز شکست در عایق ها،؛ عایق شبیه به یک خازن است که دو الکترود در دو طرف آن، صفحات خازن هستند و با اعمال ولتاژ به این خازن، شارژ می شود. پس از شکست الکتریکی عایق، این خازن در واقع دشارژ و تخلیه می گردد. به همین دلیل پدیده شکست الکتریکی عایق ها را، تخلیه الکتریکی نیز می گویند. استقامت الکتریکی عایق ها را برحسب بالاترین شدت میدان الکتریکی قابل تحمل، قبل از تخلیه الکتریکی می سنجد و معمولاً آن برحسب KV/cm یا KV/mm بیان می شود. بررسی عملکرد عایق ها، نیاز به بررسی های عملی (با استفاده از نظریه فیزیکی و روابط ریاضی) و همچنین بررسی های تجربی (از طریق آزمایش ها و اندازه گیری های لازم)، روی عایق ها دارد و پیشرفت های حاصل در زمینه مکانیزم تخلیه الکتریکی عایق ها همواره با این دو مورد همگام بوده است.

فصل اول:

گروه بندی عایق های مایع

1-1- مقدمه:

تقسیم و دسته بندی عایقها منطقاً از دیدگاه های مختلفی امکان پذیر است؛ مثلاً ساختار مولکولی عایق و یا خواص شیمیایی و فیزیکی آنها – که گروه بندی عایقها، از این دو نقطه نظر، ما را بیشتر به واکنش عایق در قبال تغییرات حرارت و فشار، شدت میدان الکتریکی و نحوه فروپاشیهای عایقی و همچنین موارد کاربرد عایق آشنا می سازد. بنابراین، خواص عایقها را با گروه بندی آنها از نقطه نظر خواص شیمیایی و فیزیکی و ساختار مولکولی آنها بررسی می کنیم:

عایقهای الکتریکی به دو دسته اصلی تقسیم می شوند: عایقهای معدنی، عایقهای ترکیبات کربنی.

از جانبی دیگر، عایقها در سه شکل ظاهر می شوند، جامد، مایع و گاز

1- عایقهای معدنی: عایقهای معدنی خود به دو دسته زیر تقسیم شده اند:

الف) عایقهای معدنی که به شکل طبیعی خود به کار گرفته می شوند، مانند سنگ مرمر و سنگ شیفر - میکا – پنبه نسوز – هوا و ازت

ب) عایقهای معدنی که برای استفاده و به کار گرفتن باید قبلاً آماده شوند. مانند عایقهایی که از خاک چینی و یا گل رس تهیه می شوند و همچنین شیشه و کوارتس

2- عایقهای ترکیبات کربنی: این عایقها نیز خود به دو دسته زیر تقسیم شده اند:

الف) عایقهای ترکیبات کربنی که به شکل طبیعی خود به کار گرفته می شوند، مانند چوب، کائوچوک طبیعی و گوتا پرشا.

ب) عایقهای ترکیبات کربنی که پس از آماده شدن و تغییراتی در آنها بکار گرفته می شود، مانند پنبه، ابریشم، کاغذ، سلولز، ابریشم مصنوعی، سلولز استر.

عایقهای مصنوعی ترکیبات کربنی نیز متعلق به این گروه و برحسب فرآیند شیمیایی که در ساخت آنها به کار گرفته می شود، به سه دسته تقسیم می شوند:

- عایقهای گروه پلی مریزاسیون

- عایقهای گروه پلی کندانساسیون

عایقهای گروه پلی آدیسیون

همچنین عایقهای که از مواد مختلف ساخته می شوند:

- صفحات عایقی پرس شده

- نخها و رشته های شیشه ای

- ضمغها و لاکها

3- عایقهای مایع: روغن های عایق، کلوفن

4- گازهای عایق: هوا و گازهای الکترونگاتیف

عایقهای معدنی طبیعی

سنگهای مرمر و سنگهای شیفر، که در گذشته به منظور ساختن تابلوهای الکتریکی کاربردی داشته است، امروزه در الکتروتکنیک به ندرت مورد استفاده ای می یابند.

1) میکا: این عایق در ماشینهای الکتریکی، خازنها و بسیاری دستگاه های الکتریکی مورد استفاده قرار می گیرد، از خواص ویژه آن قابلیت تورق آن است که امکان می دهد لایه های به ضخامت لایه یک هزارم میلیمتر از آن ساخته شود. به علاوه، قابلیت کشش و خمش این عایق نیز بسیار خوب است.

دو نوع از این عایق کاربرد بیشتری یافته است.

موسکویت (پتاسیم میکا) با رابطه شیمیایی:

(Si3AlO10(OH)2Al2)K

که رنگ آن متمایل به قرمز، زرد و یا قهوه ای و سبز می باشد؛

ملوگوپیت (ماگنزیم میکا) با رابطه شیمیایی :

(Si3AlO10(OH)2Mg3)K

با رنگ زرد، قهوه ای.

عامل تعیین کننده در کیفیت میکا اندازه و رنگ قطعات میکا است، همچنین درجه خلوص و کامل بودن بلورهای آن است. بهترین میکا دارای ضخامتی برابر 1/0 میلیمتر و رنگ صورتی دارد و ترک خوردگی در آن مشاهده نمی شود. بهترین خواص میکا استقامت الکتریکی بسیار خوب آن است. صفحاتی در آن با ضخامت 1.... 055/0 میلیمتر دارای استقامتی برابر KV/Cm 900-135 می باشد.

عدد عایقی میکا 8-5/6e = است. جذب رطوبت و آب آن در حداقل و تقریباً صفر است. استقامت آن در برابر حرارت بسیار خوب و در حرارتی برابر 600 تا 700 درجه تغییر رنگ داده و شکننده می شود. قطعات کوچک میکا را با لاک آمیخته و به نام میکانیت در بازار عرضه می گردد. معمولاً قطعات کوچک را با لاک آمیخته و بر روی کاغذ یا پارچه می چسبانند، بنابراین، میکا در شکل اخیر قابل انعطاف بوده و آن را میکا فولیوم می نامند، اخیراً از میکای طبیعی به کمک مواد چسبنده لایه هایی با ضخامت 1/0- 04/0 میلیمتر به شکل نوار تهیه می شود که برحسب کاربرد دارای ابعاد مختلفی است و به نام سامیکافولیوم معروف می باشد.

2) آسبست (سیلیکات ماگنزیم):

آسبست عایقی است که از الیاف کریستالی تشکیل شده است این الیاف قابلیت خمش قابل ملاحظه ای دارند. آسبست های معادن مختلف دنیا دارای خواص عایقی و فیزیکی مختلفی هستند.

مهمترین آسبست های موجود عبارتند از:

1-2) آسبست موسوم به سرپن تین با رابطه شیمیایی:

3MgO.2SiO2 . 2H2O

این نوع از آسبست دارای مقاومت حرارتی تا 6000C درجه سانتی گراد می باشد در بالای این درجه از حرارت، آب متبلور شده این آسبست از پیوند خود جدا می گردد. این نوع آسبست در کانادا و آفریقای جنوبی یافت می شود.

2-2) آسبست موسوم به هورن بلند

این نوع از آسبست از نوع بالا سخت تر است و در کشور شوروی استخراج می گردد کاربرد این نوع آسبست در صنایع ایجاد حرارت از راه عبور جریان است که در سالهای اخیر به میزان نسبتاً زیادی جای خود را به الیاف شیشه داده است.

3) عایقهای معدنی که برای استفاده در الکتروتکنیک باید قبلاً آماده شوند.

1-3) عایقهای از خاک چینی و گل رس - سرامیک

2-3) کائولن یا خاک چینی – قسمت اصلی این عایق معدنی از کائولینیت است.

2-1- طبقه بندی مواد براساس دمای کار:

مواد عایقی همیشه براساس دمای کار نامی آنها طبقه بندی می شوند. با ظهور بسیاری از مواد جدید عایقی، طبقه بندی جدید مواد نیز مانند جدول (1-1) به وجود آمده است این دسته بندی براساس دمای نامی عایق هاست. البته طول عمر نامی عایقها وقتی معتبر است که دمای کار عایق در شرایط بهره برداری، همواره از دمای نامی آن بیشتر نشود.

نمونه ای از مواد عایقی در هر یک از طبقات جدول (1-1) عبارتند از:

طبقه Y: کاغذ، پنبه، ابریشم، PVC ، و لاستیک طبیعی؛

طبقه A: پنبه و ابریشم یا کاغذی که به طور کامل در یک دی الکتریک مایع غوطه ور، آغشته و یا کاملاً پوشیده شده باشد؛

طبقه E: پلی اتیلن، سلولز؛

طبقه B: میکا، پشم شیشه، پنبه نسوز، پلی استر، باکلیت، آسبست وغیره همراه با مواد چسب دار مناسب؛

طبقه F : اپوکسی رزین، و مواد طبقه B اصلاح یافته و قابل کاربرد در دماهای بالاتر؛

طبقه H : لاستیک سیلیکون دار

طبقه C : تفلون و عایق های گروه B که آغشته به چسبنده های غیر آلی شده باشند.

تجهیزات الکتریکی با طبقه عایقی مخصوص می توانند در دمای بالاتری هم کار کنند،

جدول (1-1): طبقه بندی مواد عایقی برحسب دما

طبقه

دما (0c)

Y

90

A

105

E

120

B

130

F

155

H

180

C

بالای 180.

اما عمر مفید آن ها کاهش می یابد. عمر تجهیزات، تابعی از دما و زمان است و در کل عملکرد اجزاء، به عمل آن ها در سیستم بستگی دارد. رابطه تقریبی برای تخمین عمر عایق ها را می توان به صورت زیر ارائه کرد:

(1-1)

که در این رابطه:

L = طول عمر عایق در شرایط کارکرد با دمای q ،

L0 = طول عمر نامی عایق در دمای نامی q0 مربوط به کلاس عایقی

Dq = پله دمایی است که عمر عایق نصف می شود. (برای عایق های مختلف بین 6 تا 8 درجه سانتی گراد است)

3-1- عایقهای مایع - روغن:

مهمترین عایق های مایع عبارتند از روغنهای معدنی که از ترکیبات کربنی تشکیل شده اند. این روغنها از پالایش نفت خام به دست می آیند.

با بالا بردن حرارت پالایش، مشتقات زیر به دست می آیند: بنزین، نفت، روغن معدنی، گریس، وازلین و قیر از روغنهای به دست آمده تنها تعدادی از آنها برای عایقهای الکتروتکنیک مناسب می باشند. روغنهای عایق در الکتروتکنیک باید دارای خواص زیر باشند:

- خواص خوب الکتریکی

- انتقال حرارت از راه جابجایی

- استقامت زیاد الکتریکی در مقابل فشار ضربه ای

- حفاظت و پوشش عایقهای جامد در مقابل شرایط نامساعد خارج

- خاموش کردن جرقه الکتریکی – جرقه الکتریکی روغن را به کربن و هیدروژن تجزیه می کند که از این راه اتمسفری از هیدروژن تشکیل می گردد و حرارتی زیاد پدید می آید این حرارت به وسیله روغن هدایت می گردد.

خود هیدروژن باعث خنک شدن محل جرقه الکتریکی خواهد گردید.

جنبه ضعف روغنهای الکتریکی عایق قابل اشتعال بودن آنهاست که در صورت استعمال کلوفن این جنبه منفی نیز برطرف می گردد.

روغنهای معدنی از لحاظ خواص شیمیایی به سه دسته اصلی تقسیم می گردند:

- روغنهای نفتی که بیش از دوسوم آنها از پارافین است و پیوند مولکولی آن زنجیری است.

- روغنهای متانی که بیش از دوسوم آنها از نفت است و پیوند مولکولی آن حلقوی است.

- روغنهای متانی – نفتی که در آنها نسبت نفت و متان هیچ کدام به حد قابل توجهی زیاد نیستند.

نقطه انجماد روغنهای متانی بالا بوده و از این جهت در دستگاه های نصب شده در محوطه آزاد نباید مورد استفاده قرار گیرد. در روغنهای نوع دوم و سوم، بالعکس، نقطه انجماد پایین قرار گرفته است. روغنهای معدنی مورد استفاده در فشار قوی اجازه ندارند مقادیر زیادی از ترکیبات کربنی سیر نشده به همراه داشته باشند؛ و بدین لحاظ، اغلب ترکیبات کربنی و پارافینی و نفتی با رابطه CH3 (CH2)20CH3 مورد استفاده قرار می گیرند.

روغنهای معدنی در ارتباط با اکسیژن و حرارت، مواد اکسید شده ای می دنهند که به شکل اسید و مواد غیر محلول ته نشین می شود. این مواد ته نشین شده، بویژه به علت عدم هدایت حرارت بسیار زیان بخش است. تشکیل مواد ته نشین شده در روغن به «کهنه شدن» روغن منتهی می شود. عمل کهنه شدن روغن بیشتر و سریعتر در مجاورت فلزات مثل آهن و مس، انجام می گیرد، در حالیکه مجاورت آلومینیوم و نقره در این مورد بی تأثیر است.

عدد عایقی روغن بین 2/2 تا 45/2 قرار می گیرد که با افزایش حرارت به میزان بسیار قلیلی تغییر می یابد. روغن کهنه شده، بالعکس، با افزایش حرارت، عدد عایقی خود را تغییر می دهد؛ و این به علت تشکیل مواد ته نشین شده است. در جدول زیر، تغییر عدد عایقی در تابعیت از حرارت برای یک روغن کهنه، که در آن رطوبت نیز تأثیر گذارده است، داده می شود.

90

60

20

T(0C)

21

5.8

2.2

e

شکل 1-1- ضریب تلفات 5 نوع روغن معدنی در تابعیت از حرارت

به دلیل کوچک بودن عدد عایقی روغن، آنجا که عایقی جامد با روغن، تحت فشاری الکتریکی به سری بسته شده باشد، فشار الکتریکی بزرگی بر روی روغن قرار می گیرد و عایق به سری بسته شده با روغن تحت ولتاژ نسبتاً کوچکی واقع می شود. ضریب تلفات tgd در روغن، مادامی که حرارت ایجاد شده در مایع به خارج هدایت شود، رل مهمی را در پدید آوردن فروپاشی حرارتی بازی نمی کند.

بالعکس ، کاغذ غوطه خورده در روغن، از لحاظ ضریب تلفات، حساسیت قابل توجهی را نشان می دهد؛ و بنابراین در عایق «کاغذ – روغن» باید سعی کرد که ضریب تلفات پایین قرار گیرد؛ و به همین دلیل در ساختمان خازنها و ترانسقورماتورهای روغنی تعداد قابل ملاحظه ای از روغنهای معدنی، به علت بالا بودن ضریب تلفات خود، کاربردی ندارند.

در شکل 1-1- ضریب تلفات tgd برای چندین نوع روغن با کیفیتهای متفاوت را در تابعیت از حرارت نشان می دهیم:

1- روغن معدنی با کیفیت خوب

2- روغن معدنی با کیفیت متوسط

3 و4- روغن معدنی با کیفیت نامطلوب

5- مایع عایق، ساخته شده بر مبنای بنزول.

شکل 2-1- ضریب تلفات و مقاومت الکتریکی روغن در تابعیت از حرارت

در این زمینه، سنجش مقاومت الکتریکی روغن نیز مانند اندازه گیری ضریب تلفات مبین کیفیت روغن است به همین علت، در شکل 2-1 مسیر منحنی ضریب تلفات و مقاومت روغن به عنوان تابعی از حرارت نشان داده شده است.

1-3-1- استقامت الکتریکی روغن عایق:

روغنی که از صافی عبور داده شده باشد و از ذرات گاز و مواد بیگانه به میزان قابل توجهی پاک شده باشد، دارای استقامت الکتریکی بزرگی است. اندازه گیری های متعددی، در این زمینه، شدت میدان فروپاشی الکتریکی را بیش از 200 کیلوولت بر سانتی متر اندازه گیری کرده است. استقامت الکتریکی روغنها، تا حد نسبتاً زیادی، از شکل و فاصله قطبها تبعیت می کند. به همین علت، شکل قطبها و فاصله آنها استاندارد شده است. در میدان الکتریکی همگنی با فاصله 15 تا 40 سانتی متر بین قطبهای گوی شکل با قطر 50 سانتی متر شدت میدان فروپاشی الکتریکی 45 کیلوولت بر سانتی متر اندازه گیری شده است. همین مقدار برای دو قطب صفحه – صفحه با فاصله سه سانتی متر بدست آمده است.

سرعت افزایش فشار الکتریکی نیز بر روی استقامت الکتریکی روغن موثر است. برای مثال، بین دو قطب صفحه ای شکل با قطر 10 سانتی متر و لبه های گرد شده و فاصله 95 میلیمتر، شدت میدان فروپاشی الکتریکی، پس از 7 دقیقه از گذراندن فشار الکتریکی روی قطبها، 5/11 کیلوولت بر سانتی متر بوده است پس از یک دقیقه 5/12 و یک ثانیه 16 کیلوولت بر سانتی متر.

بدیهی است که این مقدار برای فشار الکتریکی ضربه ای افزایش می یابد. بنابراین، فشار الکتریکی فروپاشی برای روغن و کاغذ و روغن را در شکل 3-1 نشان داده ایم.

تخلیه الکتریکی در روغن از جهات مختلف نظیر تخلیه الکتریکی نزد گازهاست تخلیه ناقص الکتریکی در روغن نیز مانند گازها مشاهده می گردد. وجود حبابهای گاز و یا هوا باعث یونیزاسیون در روغنها می گردد، چنانچه در گازها نیز می توان مشاهده کرد.

فروپاشی الکتریکی در روغنها به وسیله نظریه های مختلفی بیان شده که مبنای آن بر شروع تخلیه الکتریکی در گاز موجود در روغن، گذارده شده است. این گاز بر اثر حرارت در روغن ایجاد می شود، و یا قبلاً در روغن موجود بوده است. این نظریه ها هر کدام به تنهایی، قادر به بیان مکانیزم فروپاشی الکتریکی در روغن نیستند.

شکل 3-1- فشار الکتریکی فروپاشی روغن خالص و کاغذ روغن تحت فشار الکتریکی متفاوت 4 و 3 و 1- فشار الکتریکی ضربه ای

2- فشار الکتریکی مستقیم

7 و 5 و 3- فشار الکتریکی متناوب

A- کاغذ عایق ترانسفورماتور

به منظور به تأخیر انداختن عمل اکسیداسیون و لرت بندی در آن موادی به آن اضافه می کنند.

تجربه نشان داده است که با اضافه کردن چنین موادی به روغن، زمان کار آنها را می توان تا سه برابر اضافه کرد. روغن عایق تحت حرارت در کنار مس و فولاد تشکیل مواد ته نشین شده ای را می دهد که استقامت الکتریکی روغن را به شدت پایین می آورد.

در این میان، وجود اکسیژن عمل لرت بندی و اکسیداسیون را تسریع می کند. لذا، کوشش شده است که در مواردی روغن ترانسفورماتور و یا خازن را تحت پوشش ازت قرار دهند. اما در کلیه ترانسفورماتورها و یا کلیدهای روغنی قدرت این عمل میسر نیست و در بسیاری از موارد اضافه کردن مواد ضد لرت بندی بهترین وسیله است. بدیهی است که در این زمینه نیز هنوز نمی دانیم که تا چه حد این مواد بر روی استقامت الکتریکی روغن تأثیر سوء خواهد داشت، و یا صاف کردن روغن و جدانمودن مواد ته نشین شده از آن به وسیله صافیها چه مقدار از این مواد ضد لرت بندی را از روغن جدا می سازد. همچنین، آیا بکار بردن این مواد در کلیدهای روغنی قدرت چه تأثیری بر روی مدت پایداری و طول قوس الکتریکی در زمان قطع کلید خواهد داشت. آزمایشهای تکاملی به این پرسشها به طور قطع پاسخ خواهد داد امروزه قادریم که روغن دستگاه های الکتریکی را در زیر بار تصفیه کرده و از مواد بیگانه جداسازیم.

2-3-1- کاغذ غوطه خورده در روغن:

در ترانسفورماتورها، خازنها و خازنهای عبوری پیچکهایی از کاغذ تهیه می شود که، علی رغم انتخاب کاغذ با خواص خوب الکتریکی. استقامت الکتریکی مطلوب را ندارد. اما اگر این پیچک را از گازو هوا تخلیه کنیم و در حال خلاء آن را در روغن غوطه دهیم، عایقی با مشخصات بسیار خوب الکتریکی به دست می آوریم که در طی بیش از 60 سال اخیر، علی رغم وجود عایقهای مصنوعی کاربرد وسیعی در ترانسفورماتور و خازنسازی یافته است. عایق «کاغذ – روغن»، در صورت انتخاب کاغذهای نازک و روغن با ضریب هدایت تلفات (tgd) کم دارای استقامت الکتریکی کاملاً خوب در حدود 400 kV/cm خواهد شد. همین استقامت الکتریکی در قبال فشار ضربه ای 1/50 mS برای ضخامتهای نسبتاً بزرگ (دسته ای از اوراق نازک کاغذ) در حدود 850 kV/cm است.

شکل4-1

ضریب تلفات tgd برای کاغذهای نازک و پیچکهای تهیه شده از این کاغذها بین 012/0 تا 04/0 تحت فرکانس 50 هرتس می باشد. عدد عایقی پیچک «کاغذ – روغن» برحسب حجم آن و درجه حرارت 20 سانتی گراد بین 5/3 تا 3/4 می باشد، و با افزایش حرارت تا حدود 100 درجه 6 تا 8 درصد بر مقدار عدد عایقی افزوده می شود.

از نقطه نظر استقامت الکتریکی عایق «کاغذ – روغن» در فشار قوی، هر چه ضخامت کاغذ کمتر باشد، استقامت الکتریکی بزرگتر خواهد بود. مثلاً در کابلهای «کاغذ – روغن» شدت میدان تحت فشار روغن برابر 15kg/cm2 در حدود 95kv/mm و اگر ضخامت کاغذ از 0.01 به 0.012 میلیمتر ارتقا یابد، شدت میدان 65kV/mm ، و در ضخامت 0.15 میلیمتر به 58kV/mm تنزل خواهد یافت- فشار روغن ثابت نگاه داشته شده است. در شکل 4-1، مقطع یکی از کابلهای کاغذ – روغن نشان داده شده است.

علی رغم خلاء تا حدود 10-3 میلیمتر جیوه، معذالک، ذرات گاز – رطوبت و حفره های مجوف در بین لایه های کاغذ باقی می ماند که خود در محدود نگاهداشتن استقامت الکتریکی کابل و بالا بردن تلفات الکتریکی موثر است.

همچنین، در صنعت ترانسفورماتورسازی، پیچکهای فشار قوی و ضعیف و لایه های هر کدام از این پیچکها با نوار کاغذ عایق بندی شده و در روغن غوطه می خورد. در ترانسفورماتورهای فشار و جریان الکتریکی نیز باید با نوار عایق قسمتهای مختلف آن نوار کاغذ قسمتهای مختلف آن نوار پیچ شود تا پتانسیل از مقادیر زیاد تا صفر هدایت شود. شکلهای 5-1 و 6-1 به ترتیب ترانسفورماتورجریان و فشار را نشان می دهد. پیچکهای کاغذ هر دو با دست تهیه شده است.

در ترانسفورماتورهای قدرت، علاوه بر پیچک کاغذ، در فواصل و نقاط معینی از چوب و مقوای سخت نیز استفاده می شود.

شکل 5-1- کاربرد نوار کاغذی در ساختمان ترانسفورماتور جریان نوع صلیب حلقه ای

پس از تهیه پیچک و اختتام ساختمان ترانسفورماتور، تمامی دستگاه را در دیگهای بزرگ تحت خلاء 10-2 تا 10-4 میلیمتر جیوه (به ترتیب از ترانسفورماتور قدرت تا ترانسفورماتور جریان و ولتاژ) در روغن غوطه می دهند.

شکل 7-1- ساختمان پیچکهای الکتریکی و نوارهای کاغذ و، همچنین، نقاطی که از چوب و مقوای سخت برای عایق بندی در آنها استفاده شده است را نشان می دهد.

در خازنهای عبوری برای تنظیم و هدایت پتانسیل نیز از کاغذ غوطه خورده در روغن استفاده می شود. با اینکه در سالهای اخیر تعدادی از خازنهای عبوری فشار قوی را از صمغ مصنوعی ساخته اند. معذالک، کاربرد عایق کاغذ – روغن در ساختمان خازنهای عبوری به حدی گسترش یافته است که جانشین شدن آنها به وسیله صمغهای مصنوعی، آزمایشهای تکاملی متعددی را نیازمند است.


شکل 7-1- برش عرضی در یک ترانسفورماتور

قدرت «کاغذ – روغن» 1- آهن 2- پیچک ثانویه

3- پیچک اولیه 4- لایه عایقی از مقوای سخت
5- لایه عایقی از کاغذ 6- لایه عایقی چوب

و یا صمغ­مصنوعی

در شکل 8-1 برشی طولی از یک خازن عبوری کاغذ – روغن نشان داده شده است. کاغذ انتخاب شده برای پیچیدن نوار حول استوانه از کاغذ ضخیم استفاده شده است. این خازن عبوری 110 کیلوولتی است.

در خازنهای قدرت «کاغذ – روغن» - MP – که کاربرد وسیع در جریان و فشار قوی دارد، از کاغذ بسیار نازک مسطح و یا لوله شده استفاده می شود که خازنهای مسطح یا استوانه شکل را تشکیل می دهد.

به منظور روشنی بیشتر نسبت به ساختمان این نوع خازنها، دو برش از خازن مسطح (a) و خازن استوانه شکل (b) را در شکلهای 9-1 و 10-ا نشان می دهیم.

a b

شکل 9-1- خازن استوانه شکل، کاغذ – روغن شکل 10-1- خازن مسطح کاغذ – روغن

پیچکهای کاغذی برای خازنها، معمولاً، دارای ضخامتی در هر برگ کاغذ برابر 008/0 تا 025/0 میلیمتر است،؛ و پهنای نوار بین 20 تا 250 میلیمتر. تمامی پیچکها به وسیله ماشینهای ویژه ای تهیه می شود. بدیهی است پس از تهیه پیچکها و لایه هادی و خشک کردن آن از طریق خلاء، آنها را در روغن (در حالت خلاء) غوطه داده، و بدین طریق، عایق با ارزش روغن کاغذ را بدست می آورند.

استفاده از عایق کاغذ – روغن در مهندسی – تکنولوژی فشار قوی – جریان قوی طیف وسیعی را شامل می شود: از ترانسفورماتورهای قدرت تا کابلهای فشارقوی و از ترانسفورماتورهای اندازه گیری، خازن های عبوری تا خازنهای قدرت.

در این طیف وسیع از موارد استعمال «کاغذ - روغن» بخش صنایع خازنسازی از اهمیت و ظرافت فنی ویژه ای برخوردار است. امروزه، متعادل کردن ضریب قدرت cosj کلیه مصرف کننده ها و خطوط انتقال و توزیع انرژی الکتریکی به وسیله خازنهای MP ، یعنی خازنهای کاغذ – روغن، انجام می گیرد.

لازم به ذکر است که در پاره ای از موارد، در تهیه عایق «کاغذ – روغن» از ترکیبات کلر کربنی، مثل کلوفن، استفاده می شود و کاغذ در محیطی خلاء در کلوفن غوطه داده می شود. بدیهی است که عدد عایقی کلوفن که بین 4 تا 5 است آن را در این مورد متمایز ساخته است.

4-1- کلوفن:

استفاده از روغنهای معدنی در دستگاه های الکتریکی پیوسته این خطر را با خود به همراه دارد که بر اثر جرقه و یا ایجاد حرارت زیاد روغن آتش بگیرد. به این دلیل، از چندین ده سال تاکنون، پیوسته دنیای تحقیق و تتبع در این راه گام برداشته است که مایعی با کلیه مشخصات خوب الکتریکی روغن بیابد و، در عین حال، دچار حریق و آتش سوزی نگردد. این مشخصات در ترکیبات کربنی با کلر یافته می شود. نوعی از این ترکیب را نام بازرگانی و صنعتی کلوفن داده اند.

در عایقهای الکتریکی انواعی از این ترکیبات مورد استعمال دارند:

- ترکیب پارافین و کلر

- ترکیب بنزول و کلر C6H3­Cl3 (تری کلرو بنزول)

- ترکیب دی فنیل و کلر

پایه و مبنای ترکیبات دیفنیل و کلر، چنانچه در بالا ذکر شد، تحت نام کلوفن به بازار می آید. دیفنیل با رابطه شیمیایی زیر است:

برحسب تعداد اتم هیدروژنی که به وسیله کلر جانشین می گردد، انواع زیر از ترکیبات کلرودیفنیل را می شناسیم:

- تری کلر دی فنیل A – 30

- تترا کلر دی فنیل A-40

- پنتا کلر دی فنیل A – 50

هگزا کلر دی فنیل A -60 کلوفن

ممزوجی از A-60 و C6H3Cl3 برای ترانسفورماتورها بسیار مناسب است و تحت نام T – 64 به فروش می رسد. تأثیر ترکیب شیمیایی کلر آن است که بدین وسیله مولکول جسم تازه غیر متقارن شده و تشکیل دو قطبی ای را با تمام مشخصات عایقهای دو قطبی می دهد بدیهی است که اضافه کردن کلر برای بدست آوردن خاصیت عدم اشتعال عایق است.

شکل 11-1 ضریب تلفات و عدد عایقی ترکیبات دیفنیل کلر را برحسب مقدار کلر و تغییر درجه حرارت نشان می دهد.

در شکل 12-1 نیز برای ترکیبات مختلفی از دیفنیل کلر تابعیت ضریب تلفات tgd و عدد عایقی e را با تغییر درجه حرارت نشان داده ایم.

شکل 11-1- ضریب تلفات tgd و e در تابعیت از مقدار کلر

شکل 12-1- tgd و e در تابعیت از مقدار کلر برای درجه حرارتهای مختلف


در دو شکل مزبور، تأثیر درجه حرارت بر روی ضریب تلفات به خوبی مشهود است به همین قسم، عدد عایقی نیز در تحت تأثیر حرارت کوچک شده است (تا 60 درجه)، و از جانبی دیگر، مقدار کلر درترکیب نیز بر تغییرات آن تأثیر کرده و با بالا رفتن درصد مقدار کلر در ترکیب عدد عایقی کوچک شده است.

با توجه به پستهای تبدیل ولتاژ در مناطق سرد و گرم، درجه حرارت را از 30- درجه تا 60+ درجه سانتی گراد تغییر داده ایم. بدیهی است که درجه حرارت مربوطه مجموع درجه حرارت محیطی و حرارت ناشی از جریان الکتریسیته می باشد.

کار با کلوفن برای پوست بدن مضر و خطرناک است.

همچنین، اقامت چندین ساعته در محیطی که با گاز کلر دیفنیل آلوده است برای دستگاه تنفسی خالی از خطر نیست. برای پوست و چشم که در ارتباط با گاز دیفنیل – کلر درآمده است، روغن کرچک مفید است. همچنین، می توان دست را ابتدا با نفت و سپس با صابون پاکیزه شست تا پوست دست محفوظ باقی بماند.

عدد عایقی کلوفن بزرگتر از عدد عایقی روغن و تقریباً دو برابر آن است. استعمال کلوفن در خازن، علاوه بر آنکه خاصیت عایق خازن را بهتر می سازد،؛ تقریباً 40 درصد از حجم آن را نیز می کاهد. بدین علت است که امروزه خازنهای فشار قوی را با کلوفن پر می کنند.

استقامت الکتریکی کلوفن در انواع اولیه آن کافی نبود. در آزمایشگاه های تکاملی، بر اثر ممزوج کردن چندین نوع از آن، استقامت الکتریکی جسم به دست آمده را بالا بردند.

از آنجا که در کلوفن واکسهای X (که بسیار مضر است) تشکیل نمی شود، مدت عمر آن را بسیار طولانی می توان دانست.

5-1- فلورکربن مایع:

در 20 سال اخیر، صنعت عایقسازی توفیق یافته است با استخلاف فلور به جای هیدروژن در پیوند کربنی تعدادی عایق خوب به دست آورد. از بین چنین عایقهایی، به آن تعداد که در حرارت مورد نیاز به شکل مایع هستند اشاره می شود. اگر پیوندهای کربن – فلور را با پیوندهای کربن – کلر مقایسه کنیم، در پاره ای از موارد، پیشرفتهای قابل توجهی را، بویژه در زمینه مشخصات الکتریکی، مشاهده می کنیم.

در جدول زیر سعی شده است که خواص الکتریکی چند نوع از پیوندهای کربنی فلور یا نام اختصاری آنها «فلور کربن» جمع آوری شود.


بررسی سنسور و اهمیت کاربرد آن

با پیشرفت سریع تکنیک اتوماسیون و پیچده تر شدن پروسه های صنعتی و کاربرد روز افزون این شاخه از تکنیک نیاز شدیدی به کاربرد سنسورهای مختلف که اطلاعات مربوط به عملیات تولید را درک و براساس این اطلاعات مقتضی صادر گردد، احساس می شود
دسته بندی برق
فرمت فایل doc
حجم فایل 3692 کیلو بایت
تعداد صفحات فایل 64
بررسی سنسور و اهمیت  کاربرد آن

فروشنده فایل

کد کاربری 8044

- سنسور و اهمیت کاربرد آن

1-1- مقدمه :

با پیشرفت سریع تکنیک اتوماسیون و پیچده تر شدن پروسه های صنعتی و کاربرد روز افزون این شاخه از تکنیک نیاز شدیدی به کاربرد سنسورهای مختلف که اطلاعات مربوط به عملیات تولید را درک و براساس این اطلاعات مقتضی صادر گردد، احساس می شود.

سنسورها به عنوان اعضای حسی یک سیستم، وظیفه جمع آوری و با تبدیل اطلاعات را به صورتی که برای یک سیستم کنترل و با اندازه گیری قابل تجزیه و تحلیل باشد به عهده دارند . در سالهای اخیر سنسورها به صورت یک عنصر قابل تفکیک سیستمهای مختلف صنعتی مورد استفاده قرار گرفته و پیشرفت سریعی در جهت جوابگویی به تقاضاهای صنعت در این شاخه از علم الکترونیک انجام پذیرفته است .

سنسورها جهت تبدیل عوامل فیزیکی مانند حرارت ، فشار ، نیرو ، طول، زاویه چرخش، دبی و غیره به سیگنالهای الکتریکی بکار برده می شوند و به همین منظور سنسورهای مختلفی که قابلیت ‌تبدیل این عوامل را به جریان برق دارا می باشند، ساخته شده اند .

یک سنسور را می توان با خصوصیات زیر تعریف نمود .

- سنسور به عنوان تبدیل کننده اطلاعات فیزیکی به سیگنالهایی، که می توان از آنها به عنوان سیگنالهای کنترل استفاده نمود . عمل می کنند .

- یک سنسور نباید حتماً یک سیگنال الکتریکی تولیدنماید . مانند سنسورهای پنیوماتیکی و...

- سنسورها در دو نوع مختلف وجود دارند .

الف )با تماس مکانیکی مانند کلید قطع و وصل ، تبدیل کننده های فشاری و...

ب) بدون تماس مکانیکی مانند سنسورهای نوری و یا حرارتی و ...

- سنسورها می توانند بعنوان چشمهای کنترل کننده یک سیستم مورد استفاده قرار گرفته و وظیفه مراقبت از پروسه و اعلام خرابی و یا نقص یک سیستم را به عهده بگیرند .

در کنار کلمة سنسور با واژه های زیر نیز در صنعت روبرو هستیم .

1- عنصر سنسور

قسمتی از سنسور را تشکیل می دهد . که عامل فیزیکی را حس کرده ، ولی بدون ، کمک قسمت آماده سازی سیگنال قادر به انجام وظیفه نیست .

2- سیستم سنسور ی(Sensor system)

مجموعه ای از عناصر اندازه گیری تبدیل و آماده سازی سیگنال را یک سیستم سنسوری می نامند .

3- سیستم مولتی سنسور

سیستم هایی که دارای چندین سنسور از یک نوع و یا از انواع مختلف می باشند سیستم مولتی سنسور می نامند .

2-1- انواع خروجیهای متداول سنسورها

در استفاده از سنسورها می بایستی با انواع سیگنالهای خروجی الکتریکی آشنا بود می توان خروجیها را در پنج ردة مختلف دسته بندی نمود .

نوع A:

سنسورهایی با ماهیت قطع و و صل خروجی ( باینری ) مانند سنسورهای نزدیکی ، فشار ، اندازه گیری سطح مایعات و ..

این نوع سنسورها را عمدتاٌ می توان بطور مستقیم به دستگاه P.L.C متصل نمود .

نوع B:

سنسورهایی که سیگنال خروجی آنها بصورت پالسی می باشند ؛ مانند سنسورهای اندازه گیری میزان چرخش و با طول و ..

این نوع سنسورها اکثراٌ توسط یک Interface قابل وصل به دستگاه P.L.C می باشند.

P.L.C. می بایستی دارای شمارندة نرم افزاری و سخت افزاری باشد .

نوع C :

سنسورهایی که سیگنال خروجی آنها بصورت آنالوگ بوده ولی دارای بخش تقویت کننده و یا تبدیل کننده نمی باشند . این سیگنالها خیلی ضعیف بوده (در حد ملی ولت) و قابل استفاده مستقیم در دستگاههای کنترل نمی باشند، مانند سنسورهای Piezoelectric و با سنسورهای Hall.

نوع D:

سنسورهایی که سیگنال خروجی آنها بصورت آنالوگ بوده و واحد الکترونیک (‌تقویت کننده تبدیل کننده ) در خود سنسور تعبیه شده است . در این نوع سنسور خروجیها را می توان بطور مستقیم جهت استفاده در دستگاههای کنترل استفاده نمود .

محدودة خروجی سیگنالها عموماً به شرح زیر می باشند:

0….10V

-5….+5V

1…5V

0…20mA

-10…+10mA

4…20mA

نوع E

سنسورهایی که سیگنالهای خروجی آنها مطابق با استانداردهای صنعتی می باشند مانند RS-485,RS-422-A,RS-232-C و با جهت Fieldbus مانند ASI,Profibus و.. در نظر گرفته شده اند .

3-1-سنسورهای باینری و آنالوگ

سنسورهای باینری مانند کلید قطع و وصل کار نموده و در صورت تحریک شدن سنسور که توسط عوامل فیزیکی صورت می گیرد . سیگنال وصل و یا قطع می گردد .در این نوع سنسورها فقط دو حالت «0» و «1» وجود دارد . در سنسورهای آنالوگ عوامل فیزیکی با توجه به شدت و تأثیر آنها به سیگنالهای آنالوگ ولتاژ و یا جریان تبدیل می شوند .

2- سوئیچهای بدون تماس

تحت این لفظ می توان سنسورهایی را طبقه بندی نمود ،که وظیفة اصلی آنها اعلام حضور یک قطعه در یک محل خاص می باشد .این نوع سوئیچها( سنسورها) دارای خروجی «0» و «1» منطقی بوده و دارای انواع مختلف می باشد کلیدهای بدون تماس بعلت استفاده فراوان در صنعت دارای اهمیت خاص بوده و در صنعت به نامهای مختلفی مانند میکروسوئیچ،کلیدهای انتهای مسیر و... معروف می باشند .

مزایای سوئیچهای بدون تماس عبارتند از :

1- بعلت عدم کنتاکت مکانیکی دارای طول عمر بیشتری هستند

2- می توان خیلی دقیق موقعیت قطعه را تعیین نمود .

3- بدون داشتن تماس با قطعه ، می تواند سیگنال مربوطه را ارسال دارد .

4- دارای سرعت عکس العمل سریع و بدون اشتباه می باشد

5- تعداد قطع و وصل تقریباً بی نهایت است.

6- می توان انواعی از این سنسورها را در شرایط کاری خیلی مشکل ( مانند رطوبت و یا حرارت بالا ) و یا خطرناک مانند ( محیط های قابل انفجار ) استفاده نمود .

سنسورهای علاوه بر داشتن سرعت انتقال بالای اطلاعات ، کنترل یک پروسه را آسان و زمان توقف دستگاه را در صورت خرابی بسیار کوتاه می نمایند . توسط سنسورها می توان محل و نوع خرابی ماشین را سریعاً تشخیص داده وتعمیرات لازم را انجام داد .

انواع سوئیچهای بدون تماس در جدول صفحة بعد نشان داده شده اند .


سنسورهای بدون تماس عموماً با ولتاژ مستقیم با 24 ولت کار می کنند محدودة کار این سنسورها بین 10 تا 30 ولت و 10 تا 55 ولت می باشد در کشورهای آسیای جنوبی و آمریکای شمالی و جنوبی همچنین استرالیا و آفریقای جنوبی حدود 30 درصد از سنسورهای القائی و نوری با جریان متناوب کار می کنند .

سنسورهای بدون تماس القائی ، خازنی و نوری در دو نوع ، با تغذیه DC‌ و تغذیه AC، ساخته می شوند . ولتاژ متداول جهت جریان متناوب 24 ولت ، 110 ولت ،120 ولت و یا 220 ولت می باشد .

مدلهایی هم از این سنسورها وجود دارند که هم با جریان متناوب ، و هم با جریان مستقیم قابلیت کار را داشته و محدودة ولتاژ کاری برای جریان مستقیم 12 ولت تا 240 ولت و برای جریان متناوب 24 ولت تا 240 ولت می باشند . نام دیگر این سوئیچها (Universal Current)U.C می باشند .

3- سنسورهای بدون تماس مغناطیسی

1-3- Reed سوئیچ

این نوع سوئیچها به میدان مغناطیسی حاصل از یک آهنربای دائمی و یا آهنربای الکتریکی حساس می باشند میدان مغناطیسی باعث اتصال دو زبانه که از جنس فرو مغناطیس ( آلیاژی از Fe-Ni,Ni-Fe) و در داخل یک کپسول شیشه ای می باشند . می شود . در داخل این کپسول شیشه ای گاز N2 که درمقابل اشتعال و فعل و انفعالات شیمیایی مقاوم می باشند پر شده است .

برخی از مشخصات فنی این نوع سنسورها به شرح جدول صفحة بعد می باشد .

12V…27/V DC or AC

Switching Voltage

±0.1mm

Switching accuracy

40W

Max.Contact rating

0.16mT

Max . magn . interference induction

2A

Max.switching current

500Hz

Max. Switching frequency

≤2ms

Switching time

0.1

Conductance

Contact service life

5.106Switching cycles

(With prctectiv circuit)

IP66

Protection class to IEC 529.Din 40 050

-20°C…60°C

Ambient operating temperature

Table 3.1: Technical characteristics or reed proximity sansors

درشکل 2-3 ساختمان Reed سوئیچ که به یک مقاومت از نوع سیم پیچ وصل شده است . نشان داده شده است دیودهای نوری نشاندهندة وضعیت قطع و وصل سوئیچ به همراه یک مقاومت وظیفة محافظت مدار را در مقابل ولتاژ بالای حاصل از قطع و وصل یک سیم پیچ را بر عهده دارند .

Reed کنتاکت ها می توانند با توجه به وضعیت قرار گرفتن میدان مغناطیسی یک آهنربای دائمی محدوده های مختلفی جهت فعال شدن داشته باشند در شکل 3-3 این محدوده ها رسم شده اند .

در محیط کاری Reed سوئیچ ها شدت میدان مغناطیسی مزاحم نباید بیشتر از 0.16 تسلا باشد . در این صورت بیاد این سنسورها را در مقابل میدانهای مزاحم ایزوله نمود .و حداقل فاصلة بین دو Reed سوئیچ بایستی 60 ‌میلی متر باشد .

2-3- سنسورهای بدون تماس و فاقد کنتاکت (‌تیغه )

1-2-3- سنسورهای القایی – مغناطیسی

در این سنسورها نوسان ساز LC‌وجود داشته که دارای یک هسته سیم پیچی شده مغناطیسی بسته می باشد با نزدیک نمودن یک میدان مغناطیسی این هستة مغناطیسی اشباع گردیده و این امر باعث تغییر جریان برق جاری شده در داخل سیم پیچ می شود بوسیلة یک تقویت کننده این اختلاف جریان حس و سپس جهت فعال کردن سنسور از آن استفاده می شود . این نوع از سنسورها فقط در مقابل میدانهای مغناطیسی حساس بوده و در مقابل فلزات از خود عکس العملی نشان نمی دهند .

2-2-3- سنسورهای بدون تماس بر اساس خاصیت Magnetorsistive

برخی از عناصر مانند InSb.Wi در میدان مغناطیس ،‌مقاومت الکرتیکی خود را تغییر می دهند و از این اصل برای ساخت این نوع از سوئیچ ها استفاده می کنند .

3-2-3- سنسورهای بدون تماس بر اساس خاصیت HALL

وقتی که یک نیمه رسانا مانند InSb در یک میدان مغناطیسی قرار گیرد ، در جهت عمود بر این میدان ولتاژی بر روی این نیمه رسانا ایجاد می شود که به ولتاژ Hall ‌معروف می باشد این نیمه رسانا باید بصورت ورقة‌نازکی که طول و عرض آن نسبت به ضخامت آن بزرگ بوده ، ساخته شود در روی این ورقه ها می توانند ولتاژی تا 1.5 ولت ایجاد شود .

4-2-3- سنسور Wiegand

سیم Wiegand آلیاژی از وانادیم (Vanadium) کبالت (Cobalt) و آهن است خاصیت آلیاژ wiegand این است که وقتی شدت یک میدان مغناطیسی از حد مشخصی تجاوز نماید ، جهت مغناطیسی محدودة Wiss بصورت ناگهانی تغییر می کند بطوریکه اگر یک سیم پیچ در دور سیم Wiegand قرار گیرد این تغییر ناگهانی به صورت جریان القایی در این آن قابل اندازه گیری می باشد .

و ولتاژی تا 3 ولت در سیم پیچ ایجاد می شود به همین خاطر اکثر این سنسورها احتیاجی به منبع تغذیه خارجی ندارند .

برخی از مشخصات عمومی سنسورهای القایی – مغناطیسی در جدول زیر نشان داده شده است .

10…30 V

Operating voltage

200 mA

Max. Switching current

2…35 mt

Min. response induction

1 mT

Max. magn. Interference induction

2A

Response travel

7…17 mm

(Dependent on field strength and cylinder)

0.1…1.5mm

Hysteresis

0.1 mm

Switching point accuracy

Voltage drop

3V

(at max. switching ctrrent)

6.5mA mex

Current consumption

-20°C…70°C

Operating remperature

1000Hz

Switchingn frequency

IP 67

Protection to IEC 529, DIN 40 050

integrated

Protective circuit for inductive

Technical data on an inductive- megnrtic proximity sensor (example)

سنسورهای مغناطیسی – القایی دارای مزایای زیر نسبت به Reed سوئیچ ها می باشند:

- نداشتن کنتاکت ( تیغه )

- از بین نرفتن کنتاکت های فلزی

- در صورتیکه محور مغناطیسی به صورت مطلوب قرار گرفته باشد فقط در یک محدوده فعال می شوند .

همانند سایر سنسورهای مغناطیسی می بایستی در محیط کار به عوامل اختلال گر در کار این نوع سوئیچ ها توجه گردد . مانند میدان مغناطیسی خارجی و با دستگاههایی که این میادین را ایجادمی نمایند .

4- سنسورهای القایی

یک سنسور القائی از یک نوسان ساز ( LC) ، یک Demodulator ، یک تقویت کننده و قسمت خروجی تشکیل شده است

توسط شکل خاص نوسان ساز ، میدان مغناطیسی از طریق دریچة نیمه بازی در یک جهت معین منتشر می شود بطوریکه میدان مغناطیسی تولید شده در یک محدودة مشخصی فعال بوده و فقط در این منطقه امکان قطع و وصل سنسور وجود دارد .

هنگامی که جریان برق سنسور وصل میگردد . نوسان ساز شروع به نوسان نموده و جریان مشخصی از آن عبور می کند اگر یک جسم هادی جریان الکتریکی در میدان مغناطیسی وارد گردد ، در آن جریان گردابی بوجود آمده و قسمتی از انرژی اسیلاتور را جذب می کند که این خود باعث تغییر میزان جریان مصرفی در نوسان ساز می گردد . این تغییرات در یک قسمت الکترونیکی تجزیه و تحلیل و خروجی سنسور قطع و یا وصل می شود .

با استفاده از سنسورهای القائی فقط اجسام هادی جریان برق قابل حس می باشند . این سنسورها با خروجیهای N.O, N.C عرضه می گردند . فاصله ای که در آن یک سنسور تغییر حالت می دهد ( بسته شده و یا باز می گردد) به عنوان فاصلة سوئیچ معروف می باشند .

هر قدر سیم پیچ بکار رفته بزرگتر باشد ( در نتیجه سنسور هم بزرگتر خواهد بود ) فاصلة‌سوئیچ هم بیشتر می گردد .برای فاصلة سوئیچ 250 میلی متر نیز سنسورهای القائی وجود دارند .جهت تعیین فاصلة سوئیچ از ورقه های استاندارد که از جنس فلز ST37 هستند استفاده می شود که ضخامت آن یک میلی متر بوده و بصورت ورقه های مربع شکل می باشند .

طول ضلع این مربع باید برابر :

1- قطر دایرة منطقه اکتیو سنسور باشد

و یا

2- سه برابر فاصله سوئیچ باشد

بزرگتر بودن ابعاد این ورقه فقط باعث ایجاد تغییرات خیلی جزئی در مقدار اندازه گرفته شده ، خواهد شد . اما کوچک بودن ابعاد باعث بدست آمدن فاصلة سوئیچ کمتری می باشد در صورت استفاده از فلزات دیگر بغیر از ST37 باعث کمتر شدن فاصلة سوئیچ خواهد شد .

هنگام نصب سنسورهای القائی در داخل نگهدارنده های فلزی می بایستی توجه نمود که بعلت وجود اجسام فلزی در طراف آن کارکرد سنسورها مختلف نگردد . از نظر تکنولوژی نصب دو نوع سنسور القایی وجود دارد :

1- در اولین نوع که در شکل3 نشان داده شده است میدان مغناطیسی در اطراف سنسور پراکنده نبوده ، بلکه به علت شکل خاص ساخت آن میدان الکترومغناطیسی فقط در ناحیة جلوی سنسور وجود دارد . به همین علت نگه دارندة فلزی سنسور اختلالی در کارکرد سنسور بوجود نمی آورد .

اگر سنسور القایی دیگری در مجاورت سنسور القایی نصب گردد ، میبایستی در بین آنها حداقل فاصله ای برابر با قطر حساس سنسور وجود داشته باشد . منطقة‌آزاد که در بالای سنسورها می باشد حد فاصل بین سنسور و اجسام موجود د رجلوی سنسور بوده و این اشیاء نمی بایستی در میدان مغناطیسی سنسور داخل و توسط سنسور حس گردند . طول منطقه آزاد سه برابر فاصلة‌سوئیچ می باشد .

این نوع سنسور ها دارای این مزیت هستند که خیلی ساده و کم حجم ؛ قابل نصب می باشند . ولی دارای فاصلة سوئیچ کمتری نسبت به سنسورهای القائی نوع 2 می باشند .

2- در این نوع سنسور های القایی میدان الکترومغناطیسی نه تنها در مقابل سر حساس سنسور ، بلکه در اطراف و حول و حوش آن بصورت جانبی نیز منتشر می گردد . در نوع اخیر که درشکل 6-4 نشان داده شده است . باید هنگام نصب ابعاد ذکر شده رعایت گردد . تا نگه دارندة فلزی سنسور تأثیر منفی و اختلالی در کار سنسور بوجود نیاورد .

5- سنسورهای خازنی

اساس کار سنسورهای خازنی بر پایة‌تغییرات ظرفیت یک خازنی می باشد که در یک مدار نوسان ساز RC قرار گرفته است سنسورهای خازنی نسبت به سنسورهای القایی این مزیت را دارند ، که علاوه بر اجسام هادی ، اشیاء عایق را نیز حس می کنند .

در این نوع از سنسور جهت ایجاد میدان الکتریکی از دو الکترود استفاده می شود .که یکی از الکترودها فعال بوده ودیگر به زمین متصل می باشد همچنین الکترود خنثی کننده ای وجود دارد که اثر رطوبت هوا را برروی خازن از بین می برد اجزاء این سنسور در شکل 1-5 نشان داده شده است

اگر فلز ، مواد مصنوعی ، شیشه ، چوب ؛ آب و ... وارد محدودة فعال سنسور گردد
( محدودة‌انتشار میدان الکتریکی نشتی خازن ) باعث تغییر ظرفیت آن گردیده که مقدار این تغیرات به عوامل زیر بستگی دارد .

1- فاصلة جسم از سنسور 2- ابعاد جسم 3- ضریب دی الکتریک جسم

توسط یک پتانسیومتر قابل تنظیم می توان فاصلة سوئیچ را تنظیم نمود . و از این خاصیت جهت حس نمودن اجسام معینی استفاده می گردد . برای مثال می توان سطح یک مایع را داخل یک بطری پلاستیکی تعیین نمود . بدون اینکه بطری پلاستیکی خود باعث بکار افتادن سنسور گردد .

در جدول 1-5 فاصله سوئیچ برای ورقة مقوا در ارتباط با ضخامت ورقه نشان داده شده است ابعاد ورقه 30 میلی متر می باشد .


دانلود مقاله حرارت ماشین مادر

مهمترین عامل در موفقیت پرورش جوجه ها مسئله حرارت است زیرا عدم توجه به این امر، سبب بی اثر شدن عوامل دیگر می گردد
دسته بندی دام و طیور
فرمت فایل doc
حجم فایل 19 کیلو بایت
تعداد صفحات فایل 19
دانلود مقاله حرارت ماشین مادر

فروشنده فایل

کد کاربری 7169

مهمترین عامل در موفقیت پرورش جوجه ها مسئله حرارت است زیرا عدم توجه به این امر، سبب بی اثر شدن عوامل دیگر می گردد.

حرارت در زیر ماشین مادر مصنوعی باید کاملا طبق احتیاجات جوجه ها تنظیم شود تا رشد جوجه ها به خوبی صورت گیرد. اگر حرارت زیاد باشد جوجه ها دچار ناراحتی شده و اجبارا از زیر ماشین ارج شده و از آن دور می شوند در این صورت وقتی که حرارت ماشین به حد معمولی رسید، ممکن است جوجه ها از برگشتن به زیر دستگاه خودداری نمایند در این صورت بخصوص در شب، دچار سرماخوردگی خواهند شد.

اگر حرارت کم باشد جوجه ها احساس سرما کرده و در زیر ماشین و در کنار هم جمع می شوند و صدای جیک جیک مخصوص در می آورند. در حقیقت این صدا، مانند لغت و کلمه ای است که جوجه ها برای ابراز عدم رضایت خود بیان می کنند و به گوش مرغدار غافل می رسانند اگر حرارت پایین باشد جوجه ها غذای خورده شده را صرف گرم کردن بدن می کنند و در این صورت رشد، کم می شود و بازده غذایی پایین می آید.

هر چه سن جوجه ها بیشتر می شود، احتیاج به حرارت کمتر می گردد و از این رو باید حرارت دستگاه مادر را کم کرد میزان کاهش حرارت بین حداکثر 8/2 درجه سانتیگراد (5 دجه فارنهایت) تا حداقل 11/1 درجه سانتیگراد (2 درجه فارنهایت) در روز می باشد به طوری که از 5 هفتگی به بعد می توان ماشین مادر را برداشت و از حرارت معمولی لانه برای نگهداری جوجه کبابی ها استفاده کرد. بدین ترتیب تا 5 هفتگی حرارت دستگاه مادر و از 5 هفتگی به بعد حرارت سالن مهم است و باید مورد تئجه قرار گرفته به دقت مورد کنترل قرار گیرد.

حرارت و تهویه لانه: حرارت سالن جوجه کبابی ها تا 14 روزگی باید 5/18 – 21 درجة سانتیگراد باشد در سنین بالاتر می توان حرارت را کم نمود به طور کلی حرارت سالن نگهداری جوجه ها باید طبق جدول زیر باشد.

حرارت سالن مخصوص نگاهداری جوجه ها

1 روزگی 25 درجة سانتیگراد یا 77 درجة فارنهایت

1 هفتگی 23 درجة سانتیگراد یا 75 درجة فارنهایت

2 هفتگی 21 درجة سانتیگراد یا 69 درجة فارنهایت

3 هفتگی 18 درجة سانتیگراد یا 65 درجة فارنهایت

از 4 هفتگی به بعد باید حرارت را به مرور پایین آورد و به 15-16 درجه رساند.

سرد بودن لانه، در اوائل زندگی جوجه ها سبب می شود که آن ها رغبتی به خارج شدن از زیر ماشین، نشان ندهند حتی برای خوردن و آشامیدن از زیر دستگاه مادر خارج نمی شوند.


بررسی فیوزهای الکتریکی

فیوز وسیله ای است جهت محافظت از مدارهای الکتریکی در مقابل بروز اشکالات ناشی از عبور جریان اضافی در آن، که به وسیله ذوب شدن و قطع المنت داخلی آن که معمولاً از جنس نقره یا مس می باشد مدار باز شده و جریان بصورت آنی قطع می گردد
دسته بندی برق
فرمت فایل doc
حجم فایل 68 کیلو بایت
تعداد صفحات فایل 92
بررسی فیوزهای الکتریکی

فروشنده فایل

کد کاربری 8044

مقدمه

فیوز وسیله ای است جهت محافظت از مدارهای الکتریکی در مقابل بروز اشکالات ناشی از عبور جریان اضافی در آن، که به وسیله ذوب شدن و قطع المنت داخلی آن که معمولاً از جنس نقره یا مس می باشد مدار باز شده و جریان بصورت آنی قطع می گردد.

شکل 1- اجزاء تشکیل دهنده یک نوع فیوز ولتاژ پایین را نشان می دهد که ممکن است در آن بیش از یک المنت به صورت موازی در داخل محفظه ای که از ماسه کوارتز پودر شده و یا پودر چینی پر شده است وجود داشته باشد. بدنة فیوز معمولاً از جنس سرامیک و گاهی ممکن است از فایبر گلاس آمیخته با رزین ساخته شود. در هر یک از دو انتهای بدنه، یک کلاهک برنجی پرس شده وجود دارد که المنتهای داخلی به آن متصل به کلاهکهای آن انجام می شود. که متناسب با کاربرد فیوز دارای انواع مختلفی است.

هنگامیکه جریان اضافه برای مدت زمان کافی از مداری عبور کند به شرح زیر به تجهیزات آن مدار صدمه مدار می سازد.

الف- حرارت اضافه یا گرمای زیاد به بستگی به مربع مقدار مؤثر جریان عبوری از مدار دارد که در اثر آن ممکن است به واسطه کار در درجه حرارت بالا، به عایقهای مدار صدمه جبران ناپذیری وارد شود. اگر جریان به قدر کافی زیاد باشد. ممکن است هادیهای فلزی مدار نیز ذوب شوند.

ب- نیروهای الکترو مغناطیسی که متناسب با مربع پیک جریان هستند. تحت شرایط خطای اتصال کوتاه سنگین، ممکن است شکست مکانیکی تجهیزات اتفاق افتد، بویژه اگر درجه حرارت نیز بالا باشد که در این صورت چون مقاومت مکانیکی مواد عمدتاً با افزایش درجه حرارت کاهش می یابد اثرات مخربتری به وجود می آید.

بعضی قطعات مانند نیمه هادیهای قدرت بالا، به انرژی آزاد شده در قطعه در خلال یک پالس کوتاه مدت حساس هستند. اگر مقاومت اهمی قطعه ثابت انتخاب شود در این صورت انرژی آزاد شده در یک پالس با مدت T متناسب با خواهد بود. این انتگرال عموماُ به عنوان « i2 t» پالس شناخته می شود.

طرحهای مختلف فیوز برای حفاظت انواع مختلف تجهیزات الکتریکی در مقابل اثرات جریان اضافی و یا انرژی اضافی فوق الذکر وجود دارند که از آنجائیکه از بحث این کتاب خارج می باشد در مورد آنها صحبت نمی گردد. خوانندگان عزیز می توانند به بروشروهای تبلیغاتی شرکت فیوزسازی مراجعه نمایند.

نمودارهای عمومی

به عنان اولین قدم در درک طریقه ای که یک فیوز عمل می کند( با بعضی اوقات می سوزد)، نمودارهای عمومی جریان، ولتاژ و درجه حرارت فیوز در طی یک عمل قطع نشان داده شده در شکل های (2)، (2-3)،(2-4)،(2-5) را در نظر بگیرید.

جریان انتظاری نشان داده شده روی این شکلها جریانی است که در مدار جاری می شد اگر فیوز عمل نمی کرد و همچنین امپدانس المنت فیوز صفر در نظر گرفته می شد. بعد از وقوع یک خطا که باعث عبور جریان و بدنبال آن باعث عملکرد دقیق می گردد، دو ناحیه متمایز زمانی وجود دارد. یکی زمان قبل از ایجاد قوس و دیگری زمان برقراری قوس است.

دراثنای زمان قبل از قوس یا به عبارتی پیش قوس ( زمان ذوب شدن) درجه حرارت المنت فیوز آنقدر افزایش می یابد تا اینکه نقطه ذوب فلز در یک یا چند نقطه از طول المنت فرا می رسد. سپس المنت فیوز قطع شده و بین دو انتهای ذوب شدة المنت که پاره شده است قوس الکتریکی برقرار می گردد. در لحظه برقراری قوس یک افزایش قابل ملاحظه در ولتاژ دو سر فیوز ایجاد می گردد که دلیل آن بعداً توضیح داده می شود. در اثنای زمان قبل از قوس، وقتی که جریان مدار بسیار زیاد است، یک افزایش جزئی در ولتاژ دو سر فیوز مشاهده می شود، که این ناشی از مقاومت اهمی المنت فیوز است که با درجه حرارت افزایش یافته است.

جرقه، در خلال و در فاصلة زمانی برقراری قوس ادامه می یابد تا سرانجام قطع نهائی جریان فرا می رسد و قوس خاموش می گردد.

شکل های (2-2) و (2-4) نمودارهایی را در شرایط اتصال کوتاه برای مدارات dc و ac در یک حالت خاص نمایش می دهند. چنانکه از این اشکال دیده می شود فیوز جریان خطای مورد انتظار را قطع می کند یعنی جریان خطا را در یک مقدار کمتر از پیک جریان انتظاری محدود می نماید. این محدودیت جریان، یکی از خواص مهم فیوزها ست که اثرات حرارتی و الکترو مکانیکی را بطور جدی و موثر کاهش می دهد. در این شرایط اندازه زمان قبل از قوس و قوس تقریباً مساوی می باشند.

شکلهای ـ2-3) و (2-5) مجدداً نمودارهایی را برای مدارات dcو ac نشان می دهند در این موارد جریان های انتظاری نسبتاً پایین هستند( همانند جریان اضافه بار) که منجر به گرم شدن آهسته وتدریجی فیوز می شود. در این حالت زمان قبل ازقوس نسبتاً طولانی و شاید هم چند ساعته است ولی زمان جرقه در مقایسه با آن بسیار ناچیز است. شکل (2-5) نشان می دهد که قبل از اینکه جریان کاملاً متوقف گردد جریان مدار ممکن است چندین نیم سیکل ac را طی نماید.

شکل

بنابراین به نظر می رسد که در بعضی از موارد خاموش شدن قوس موقعی که جریان پایین است مشکل تر از وقتی است که جریان زیادی خصوصاً در مواقع اتصال کوتاه از مدار عبور می نماید. دلیل این امر در قسمتهای بعدی توضیح داده می شود.

توزیع گرما و حرارت در المنت فیوز

رفتار و عملکرد اشاره شده فوق الذکر دقیقاً بستگی به توزیع گرما در طول المنت قبل از ذوب شدن دارد.

همچنانکه از روی شکل مشخص است درجه حرارت المنت در لحظات اولیه عبور جریان در سرتاسر طول المنت و در تمام آن بطور یکنواخت پخش می شود زیرا که زمان کافی جهت افت و اتلاف حرارت در اثر انتقال به کلاهکهای در سر فیوز وجود ندارد. با پیشرفت زمان منحنی توزیع گرما تقریباً به صورت بیضی درآمده و گرمترین نقطه در وسط المنت خواهد بود.

این بدان معنی است که در اتصال کوتاههای شدید که دامنه جریان بسیار زیاد است، درجه حرارت در زمان ذوب بطور یکنواخت در سرتاسر طول المنت فیوز توزیع می گردد و در نتیجه المنت سریعاً ذوب شده و قوسهای متعددی ایجاد می گردد. بالعکس اگر جریان کم باشد زمان قبل از قوس افزایش یافته و درجه حرارت وسط المنت ایجاد می گردد. بنابراین توزیع گرما در المنت درست قبل از ذوب آن نه تنها مشخص می کند که آیا قوس تکی یا چند تائی است بلکه تأثیر عمقی دررفتار و عملکرد فیوز در فاصله زمانی قوس دارد.

جریان نامی و حداقل جریان ذوب شدن فیوز

جریان نامی تعیین شده برای یک فیوز فرقی با میزان جریان تعیین شده بری سایر تجهیزات الکتریکی ندارد. به عبارت دیگر جریان نامی، جریانی است که توسط کمپانی سازندة فیوز تعیین گردیده که فیوز می تواند تحت شرایط کاری خود بطور پیوسته و مداوم و بدون سوختن، آن را از خود عبور دهد. جریان نامی فیوز توسط حداکثر درجه حرارتی که قطعات فیوز( خصوصاً المن فیوز) مجاز است بطور مداوم و پیوسته در آن کار کند تعیین می شود. بنابراین بیان مرز یا حد مقدار جریان یک فیوز و پیوسته در آن کار کند تعیین می شود. بنابراین بیان مرز یا حد مقدار جریان یک فیوز ما را به سوی اینکه فیوز قابلیت یا توانائی محافظت از وسیله و ابراز الکتریکی را دارد هدایت نمی کند و جریانی بیش از حداکثر جریان ( جریان نامی) مورد نیاز است تا باعث ذوب شدن المنت یا سوختن آن شود.

حداقل جریان ذوب شدن فیوز [1] (mfc) کمترین مقدار جریانی است که منجر به ذوب شدن المنت فیوز می شود. این چنین ذوب شدنی تا زمانیکه منجر به قطع گردد به قطع گردد. بطور تئوری می تواند در فاصله زمانی های مختلفی صورت پذیرد، اما در عمل جریانی که باعث سوختن یا ذوب شدن فیوز در ظرف چند ساعت گردد به عنوان (mfc) تعریف می شود

فاکتور ذوب [2] به شرح زیر تعریف می گردد:

حداقل جریان ذوب

= فاکتور فیوز

مقدار جریان نامی (غیر ذوب)

که معمولاً این فاکتور مابین 25/1 -2 می باشد و نسبت به طرح و نوع و فیوز متغیر است. بنابراین فاکتور ذوب اصولاً به فاصله موجود بین نقطه ذوب فلز المنت فیوز و حداکثر درجه حرارتی که فلز المنت فیوز بطور پیوسته و مداوم مجاز است که در آن کار کند، بستگی دارد.

فاکتور ذوب یک مفهوم مفید و کلی است و با آزمایش به طریقی که در استانداردهای فیوز مشخص شده است به خوبی بدست می آید اما کاربرد آن خالی از مشکلات نیست. در عمل حداقل جریان ذوب می تواند بر حسب محیطی که فیوز در آن مورد آزمایش واقع می شود بطور قابل ملاحظه ای تغییر یابد و همچنین مشکلی که در تعریف مقدار زمان بی نهایت وجود دارد یک اصل واضح و آشکار است که کاربرد این فاکتور مفید را بطور دقیق تحت سئوال می برد.

استاندارد IEC با مشخص نمودن زمان لازم برای ذوب، دو جریان ذوب و غیر ذوب را تعریف می کند. جریان غیر ذوب همان جریان نامی فیوز است در حالیکه جریان ذوب می باید توسط کارخانه سازنده مشخص گردد که معمولاً با داشتن فاکتور ذوب می تواند محاسبه شود. بنا به تعریف، جریان ذوب جریانی است که فیوز در یک زمان قراردادی مشخص قطع می گردد.

زمان برقراری مدت زمانی است که در زمان حرارت درطول فیوز به حالت ماندگار رسیده است و از این رو برای فیوز های بزرگتر با ظرفیت حرارتی بالاتر این زمان طولانی تر می شود. به فرض اینکه ازشرایط آزمایشی استاندارد IEC استفاده شود زمان قراردادی برای فیوزهای ولتاژ پایین به شرح زیر تعیین شده اند.

زمان برقراری بر حسب ساعت (h)

مقدار جریان نامی فیوز بر حسب آمپر(In)

1

2

3

4

مشخصه های جریان- زمان

نمونه ای از مشخصه جریان- زمان، که زمان قبل از قوس را به مقدار موثر (r.m.s) جریان انتظاری نسبت می دهد در شکل ( 2-7) ترسیم شده است. اگر جریان عبوری از فیوز کمتر از حداقل جریان ذوب باشد یک خط حرارتی ثابت و ماندگار ایجاد می شود. در این شرایط مقدار تولید گرما در داخل المنت فیوز که همان انرژی گرمائی ژول است با اتلاف گرما و انتقال آن به محیط اطراف فیوز دقیقاً به حالت تعادل آمده است. گرما به دو صورت منتقل می گردد:

اولی از طریقه هدایت محوری در طول المنت فیوز به کلاهکهای دو سر فیوز و دومی به وسیله هدایت از طریق پوتدر چینی پر کننده داخل بدنه فیوز و سپس از طریق کنوکسیون و تشعشع در فضای محیط اطراف فیوز:

هنگامیکه- جریان در فیوز از حداقل ذوب بیشتر می شود، انرژی گرمائی ژول تولید شده بیش از گرمای اتلاف شده گردیده و درجه حرارت المنت فیوز شروع به افزایش می نماید پیش از آنکه بتواند به شرایط تعادل گرمائی جدید برسد عمل ذوب شدن المنت و سوختن فیوز اتفاق می افتد. اگر جریان انتظاری را باز هم افزایش دهیم، زمان ذوب شدن کاهش می یابد. این نسبت معکوس بین زمان و جریان این واقعیت را که فلز المنت فیوز دارای ضریب حرارتی مثبت مقاومتی است تأیید می کند، یعنی اینکه المنت گرمتر دارای مقاومت الکتریکی بیشتر است و در نتیجه افزایش انرژی گرمائی ژول را در پی دارد.

برای جریانهای انتظاری خیلی بالا، فرصت و زمان کافی جهت اتلاف و افت گرما که قابل توجه باشد وجود ندارد و می توان فرض نمود که تمامی انرژی داده شده به المنت بصورت انرژی گرمائی در المان با افزایش درجه حرارت المنت ذخیره گردیده است.

الف- در ناحیه زمان طولانی مقدارخنک کنندگی محیط اطراف اهمیت دارد، در این ناحیه شرایط گرمائی موجود بصورت تدریجی تغییر می نماید. بنابراین عواملی نظیر درجه حرارت محیط، تهویه هوا، اندازه کابل های اتثال و باس بارها، باعث تغییرات مشخصه جریان- زمان خواهد شد.

ب- در ناحیه زمانی کوتاه، زمان قبل از قوس قابل مقایسه با ثابت های زمانی مدار الکتریکی تغذیه کننده فیوز می باشد و اثر شکل موج جریان انتظاری با اهمیت تلقی می شود. در حالیکه در ناحیه زمان طولانی اینطور نیست زیرا که در این ناحیه فقط اثر تکمیل شده موج که به مقدار موثر) (r.m.sجریان بستگی دارد، زمان ذوب شدن را مشخص می کند. برای زمانهای کوتاه، زمان ذوب شدن برای یک جریان انتظاری (r.m.s داده شده ( نسبت به اینکه ثابت زمانی مدار تغذیه چقدر باشد و اینکه برای یک جریان a.c در چه نقطه از موج ولتاژ مدار را بسته ایم) می تواند بطور وسیعی تغییر نماید.

پراکندگی جریان در ناحیه زمان کوتاه بعضی اوقات بوسیله ترسیم مشخصه در این ناحیه بر حسب زمان واقعی tv قابل نمایش است. این ایده بر اساس فرضیه ایکه انتگرال I2t قبل از برقراری قوس ثابت است پایه گذاری شده است. زمان واقعی زمانی است ک فلز المنت فیوز ذوب می شود در صورتیکه جریان در تمام لحظات ثابت و برابر مقدار مؤثر (r.m.s) جریانانتظاری (I) باشد.


دانلود مقاله جوجه کشی و دلایل افت هج

انجام عملیات اولیه جهت رشد جنین در داخل تخم مرغ تا مرحله بیرون آمدن آن از تخم را جوجه کشی می گویند این فرآیند بسیار پیچیده است و شامل لقاح اسپرم و تخمک و تقسیمات سلولی میتوز و تمایز و رشد اندامها می باشد
دسته بندی دام و طیور
فرمت فایل doc
حجم فایل 5493 کیلو بایت
تعداد صفحات فایل 44
دانلود مقاله جوجه کشی و دلایل افت هج

فروشنده فایل

کد کاربری 7169

جوجه کشی (هچ)

انجام عملیات اولیه جهت رشد جنین در داخل تخم مرغ تا مرحله بیرون آمدن آن از تخم را جوجه کشی می گویند. این فرآیند بسیار پیچیده است و شامل لقاح اسپرم و تخمک و تقسیمات سلولی میتوز و تمایز و رشد اندامها می باشد.

مراحل اولیه جوجه کشی در داخل بدن مرغ انجام می شود و مراحل بعدی در خارج بدن مرغ به دو صورت سنتی و صنعتی انجام می شود. (سنتی توسط مادر و صنعتی توسط مادر مصنوعی یا اصطلاحاً انکوباتور)

بهتر دیدیم با توجه به اینکه بیشتر در دنیا به صورت صنعتی انجام می شود به این مسئله با تفکر بیشتری بپردازیم. طبیعی است که مرحله تکامل جنین چه در کنار مادر و یا در دستگاه جوجه کشی مشابه می باشد ولیکن اکثر ایرادات به وجود آمده در جوجه در سیستم مصنوعی می باشد در حالت طبیعی وجود ندارد. چرا که مادر رابطه خاصی با جنین خود دارد و می داند که جنین در هر لحظه به چه چیزی نیاز دارد.

در اینجا در مورد کل این فرآیند و اختلالات در روند فرآیند بحث خواهیم نمود.

امیدوارم رهگشای دوستان گردد.

فصل اول

مراحل تکامل جنین

(جنین شناسی جوجه)

جنین شناسی جوجه

به منظور رشد جنین و نهایتاً تفریخ می بایست تخم مرغ تخم مرغ را در دستگاه جوجه کشی به صورت مصنوعی تفریخ کرد که مراحل زیر به وقوع می پیوندد لازم به ذکر است که جنین در بدن مرغ نیز تکامل دارد که ذیلاً ذکر گردیده است.

زمان های مهم در رشد جنین

1- قبل از تخم گذاری: 1- باروری 2- تقسیم و رشد سلول های زنده 3- تمایز سلول ها به گروه هایی که قسمت خاصّی را می سازند (گامترولاسیون)

2- زمانهای بین تخم گذاری و انکوباسیون: که در این زمان هیچ رشد وجود ندارد یا مرحله غیرفعال در زندگی جنین را شامل می شود. (در این زمان در صورت تأمین شرایط مناسب نگهداری تخم مرغ رشد به صفر می رسد)

3- در طی مرحله انکوباسیون:

روز اول: 1) رشد و توسعه فضا و شفاف و فضای تاریک بلاستودر 2) رشد مهم و عمده که در زیر میکروسکوپ قابل مشاهده است از جمله A 18 ساعت: تشکیل ناحیه مربوط به تغذیه جنین B 19 ساعت شروع ظهور چین های مغذی C 20 ساعت شروع و شکل گیری سر D شروع و شکل گیری مغز و سیستم عصبی E 22 ساعته شروع و شکل گیری سر F 22 ساعته: ظهور جزایر خونی J 24 ساعته: شروع شکل گیری چشمها