فایل بای | FileBuy

مرجع خرید و دانلود گزارش کار آموزی ، گزارشکار آزمایشگاه ، مقاله ، تحقیق ، پروژه و پایان نامه های کلیه رشته های دانشگاهی

فایل بای | FileBuy

مرجع خرید و دانلود گزارش کار آموزی ، گزارشکار آزمایشگاه ، مقاله ، تحقیق ، پروژه و پایان نامه های کلیه رشته های دانشگاهی

کاربرد کامپیوتری بردارهای رتیز وابسته به بار، خصوصیات همگرایی و بسط آن به حالتهای عمومی تر بارگذاری

توسعه و رشد سریع سرعت کامپیوترها و روشهای اجزای محدود در طی سی سال گذشته محدوده و پیچیدگی مسائل سازه ای قابل حل را افزایش داده است روش اجزای محدود روش تحلیلی را فراهم کرده است که امکان تحلیل هندسه، شرایط مرزی و بارگذاری دلخواه را به وجود آورده است و قابل اعمال بر سازه‌های یک بعدی، دو بعدی و سه بعدی می‌باشد در کاربرد این روش برای دینامیک سازه‌ها وی
دسته بندی ریاضی
فرمت فایل doc
حجم فایل 157 کیلو بایت
تعداد صفحات فایل 183
کاربرد کامپیوتری بردارهای رتیز وابسته به بار، خصوصیات همگرایی و بسط آن به حالتهای عمومی تر بارگذاری

فروشنده فایل

کد کاربری 8044

فصل اول

مقدمه

توسعه و رشد سریع سرعت کامپیوترها و روشهای اجزای محدود در طی سی سال گذشته محدوده و پیچیدگی مسائل سازه ای قابل حل را افزایش داده است. روش اجزای محدود روش تحلیلی را فراهم کرده است که امکان تحلیل هندسه، شرایط مرزی و بارگذاری دلخواه را به وجود آورده است و قابل اعمال بر سازه‌های یک بعدی، دو بعدی و سه بعدی می‌باشد. در کاربرد این روش برای دینامیک سازه‌ها ویژگی غالب روش اجزای محدود آن است که سیستم پیوسته واقعی را که از نظر تئوری بینهایت درجة آزادی دارد، با یک سیستم تقریبی چند درجه آزادی جایگزین نماید. هنگامی که با سازه‌های مهندسی کار می‌کنیم غیر معمول نمی‌باشد که تعداد درجات آزادی که در آنالیز باقی می‌مانند بسیار بزرگ باشد. بنابراین تأکید بسیاری در دینامیک سازه برای توسعة روشهای کارآمدی صورت می‌گیرد که بتوان پاسخ سیستم‌های بزرگ را تحت انواع گوناگون بارگذاری بدست آورد.

هر چند اساس روشهای معمولی جبر ماتریس تحت تأثیر درجات آزادی قرار نمی‌گیرند، شامل محاسباتی و قیمت به سرعت با افزایش تعداد درجات آزادی افزایش می‌یابند. بنابراین بسیار مهم است که قیمت محاسبات در حد معقول نگهداشته شوند تا امکان تحلیل مجدد سازه بوجود آید. هزینه پایین محاسبات کامپیوتری برای یک تحلیل امکان اتخاذ یک سری تصمیمات اساسی در انتخاب و تغییر مدل و بارگذاری را برای مطالعة حساسیت نتایج، بهبود طراحی اولیه و رهنمون شدن به سمت قابلیت اعتماد برآوردها فراهم می‌آورد. بنابراین، بهینه سازی در روشهای عددی و متدهای حل که باعث کاهش زمان انجام محاسبات برای مسائل بزرگ گردند بسیار مفید خواهند بود.

استفاده از بردارهای ویژه، برای کاهش اندازة سیستمهای سازه‌ای یا ارائه رفتار سازه به وسیلة تعداد کمی از مختصاتهای عمومی (تعمیم یافته) – در فرمول بندی سنتی – احتیاج به حل بسیار گرانقیمت مقدار ویژه دارد.

یک روش جدید از تحلیل دینامیکی که نیاز به برآورد دقیق فرکانس ارتعاش آزاد و اشکال مدی ندارد اخیراً توسط ویلسون Wilson یوان (Yuan) و دیکنز (Dickens) (1.17) ارائه شده است.

روش کاهش، بردارهای رتیز وابسته به بار Wyo Rity racter) که O, Y, W (حروف اختصاری نویسندگان) بر مبنای برهم نهی مستقیم بردارهای رتیز حاصل از توزیع مکانی و … بارهای تشخیص دینامیکی می‌باشد. این بردارها در کسری از زمان لازم برای محاسبة اشکال دقیق مدی، توسط یک الگوریتم بازگشتی ساده بدست می‌آیند. ارزیابی‌های اولیه و کاربرد الگوریتم در تحلیل تاریخچه زمانی زلزله نشان داده است که استفاده از بردارهای رتیز وابسته به بار منجر به نتایج قابل مقایسه یا حتی بهتری نسبت به حل دقیق مقدار ویژه شده است.

در اینجا هدف ما تحقیق در جنبه‌های عملی کاربرد کامپیوتری بردارهای رتیز وابسته به بار، خصوصیات همگرایی و بسط آن به حالتهای عمومی تر بارگذاری می‌باشد. به علاوه، استراتژی‌های توسطعه برای تحلیل دینامیکی زیر سازه‌های چند طبقه و سیستمهای غیر خطی ارائه خواهد شد. نیز راهنمایی‌هایی برای توسعه الگوریتمهای چند منظورة Fortran برای ایجاد بردارهای رتیز تهیه شده است و برای بررسی صحت به چند سازة واقعی اعمال شده اند.

فصل اول الگوریتمهای پایه را بر اساس کارهای ویلسون و همکاران و نیز مقداری از اصول اساسی کاربرد بردارهای رتیز در دینامیک سازه‌ها را توصیف می کند. همچنین تأثیر مدلسازی ریاضی اجزای محدود که به وسیلة مشخصات معین جرم، سختی و بارگذاری تعریف می‌شود. بر روی ایجاد بردارهای رتیز وابسته به بار، ارائه می شود.

فصل دوم رابطه ای بین روش Lanczol و بردارهای رتیز وابسته به بار ایجاد می کند. نشان داده می شود که الگوریتم ایجاد بردارهای رتیز وابسته به بار مشابه الگوریتم ایجاد بردارهای Lanczo می باشد. هر چند هدف از بکارگیری بردارهای رتیز وابسته به بار بدست آوردن روش حال مقدار ویژة صحیح نیست بلکه به کارگیری اصول برداری به منظور کاهش اندازه و عرض باند سیستمهای سازه‌ای برای حل معادلات می باشد. روش بردارهای رتیز وابسته بار گسسته سازی کامل معادلات تعادل را انجام نمی دهد اما ثابت شده که بسیار کارآمدتر از روش سنتی حل مقدار ویژه است و این در حالتیکه در چه صحت بسیار مناسبی هم دارد.

فصل سوم توسعه ای برای تخمین خطا به منظور به کارگیری مقدار مناسب بردارهای رتیز برای همگرایی رضایت بخش پاسخ دینامیکی و نیز ایجاد رابطه بین بردارهای رتیز وابسته به بار سیستمهای کاهش یافته و حل مقدار ویژة سیستمهای اصلی، ارائه می نماید. تأثیر روندهای مختلف جمع برداری مانند شتابهای مودی و تصحیح استاتیکی نیز با رفتار بردارهای رتیز وابسته به بار مقایسه می شوند.

فصل 4 توسعة الگوریتمی جدید – الگوریتم بردارهای رتیز وابسته به بار LWYO برای ایجاد بردارهای وابسته به بار را ارائه می نماید که نشان داده می شود کار الگوریتم بردارهای رتیز LWYO نتایج پایدارتری نسبت به بردارهای رتیز WYD ارائه می نماید. کاربرد بردارهای رتیز LWYO همچنین اجازة کنترل بهتری بر تأثیر صحیح استاتیکی نسبت به بردارهای رتیز WYD فراهم می کند.

فصل پنجم کاربرد عملی بردارهای رتیز در مهندسی زلزله را بررسی می کند. روش تحلیل طیف پاسخ برای دو مدل سازه ای با تقریبا 150 درجه آزادی دینامیکی به کار گرفته شده است. کارایی محاسباتی بردارهای رتیز و حل مقدار ویژه مقایسه شده اند.

فصل ششم روش فرمول بندی برای توسعة روش کاهش رتیز به ازای انواع الگوهای بارگذاری عمومی که بار تابعی از زمان و مکان است را ارائه می نماید.

فصل 7 به کاربرد بردارهای رتیز وابسته به بار در زیر سازه‌های چند طبقه می پردازد که دو رهیافت بررسی می شوند.

فصل 8 بر روی استفاده از بردارهای رتیز برای سیستمهای غیر خطی دینامیکی تمرکز می کند که چندین استراتژی حل هنگام استفاده از بردارهای رتیز وابسته به بار مانند روش کاهش مختصات ارائه می شود. سپس بر روی سازه‌هایی که دچار غیر خطی شدن محلی می گردند تمرکز می شود.

1-1- روش جداسازی دو مرحله ای در تحلیل سازه‌ها

گام اول در تحلیل سازه‌ها با استفاده از اجزای محدود جداسازی سازه به منظور بدست آوردن مشخصات سختی، جرم میرایی سازه برای استفاده در معادلات تعادل دینامیکی (حرکت) می باشد. سپس جداسازی جدیدی با استفاده از ترکیب توابع شکل مستقل عمومی و خطی، که از مدلسازی قبلی بدست آمده اند، برای مشخص کردن پاسخ سازه، قابل انجام می باشد.

روش کاهش دوم برای تحلیل استاتیکی خطی جالب توجه نمی باشد زیرا برای این تحلیل تنها یک گام لازم می باشد. هر چند این کاهش دوم برای تحلیل غیر خطی استاتیکی و نیز خطی و غیر خطی دینامیکی که چندین گام باید انجام شود و در هر گام سیستمی از معادلات خطی و غیر خطی حل شود، مناسب می باشد.

1-1-1- جدسازی مسائل خطی دینامیکی به وسیلة برهم زدن مستقیم برداری

مطالعة مشخصات تغییر شکل بر اثر بارهای استاتیکی و تاریخچة زمانی پاسخ تعدادی سازة پیچیده تعداد زیادی از درجات آزادی باقی مانده در تحلیل غالباً توسط توپولوژی ساختمان دیکته می شود تا توسط پیچیدگی رفتار مورد انتظار. معمولاً هندسة سازه اجازة جداسازی به تعداد کمی المان نمی دهد اما می توان رفتار را به وسیلة تعداد کمی درجات آزادی مشخص نمود.

این مطلب به طور کلی در مورد مسائل دینامیک سازه مانند تحلیل زلزله – که مطالعات آنالیز مودال بر روی محتوای فرکانس توزیع مکانی تحریک نشان داده اند، پاسخ، با تعداد نسبتا کمی از مودهای فرکانس پایین کنترل می شود درست می باشد. در مورد تحلیل تحریکات ارتعاشی، فقط تعداد کمی از فرکانسهای متوسط ممکن است تحریک شوند. هر چند در مورد سیستمهای تحریک شدة چند گانه (multi shock excited systems) اندر کنش مودهای مربوط به فرکانس‌های متوسط و بالا ممکن در طی بازدة زمانی مورد بررسی اهمیت خود را حفظ نمایند. تغیر مبدأ از سیستم مختصات اصلی به سیستمهای مختصات مووال عمومی. که در فرمول بندی سنتی حل مسائل بزرگ مقدار ویژه مورد نیاز است، هنگامی جالب توجه است که تعداد مودهای دارای اندرکنش نسبت به درجات آزادی اصلی کم باشند.

در حالت کلی روش تحلیل اجزای محدود، کمترین فرکانسهای دقیق را بسیار خوب تخمین می زند در حالیکه وقت کم یا عدم دقت و صحت برای تقریب شکل مودهای بالاتر و فرکانس‌های بالاتر مورد انتظار می باشد. این به علت این حقیقت می باشد که مودهای بالاتر طبیعت بسیار مغتششی دارند که ارائه آنها توسط اندازة مش بندی عملی انجام شده برای محاسبات مهندسی مشکل می باشد. بنابراین توجیه کمی برای بکارگیری پاسخ دینامیکی اشکال مودهای با فرکانس بالا، در تحلیل وجود دارد. به طور ایده‌آل مش‌های اجزای محدود باید به گونه‌ای انتخاب شود که اشکال مودی مربوط به فرکانسهای مهم ارتعاش به بهترین صورت تخمین زده شوند و سپس راه حل را می توان با در نظر گرفتن پاسخ این مودها بدست آورد. این مطلب با تحلیل برهم نهی برداری، با توجه به مودهای مهم اجزای محدود، قابل انجام می‌باشد.

برآورد فرکانسهای طبیعی اشکال مودی برای سیستم‌های سازه ای بزرگ احتیاج به مقدار قابل توجهی عملیات عددی دارد. هر چند همانطور که توسط ویلسون و همکاران (1-17) اشاره شده است، ممکن است اهمیت مستقیم این اطلاعات در مهندسی ارزش محدودی داشته باشد. مقادیر فرکانسی بیانگر وضعیتهای محتمل تشدید و اشکال مدی وابسته به فرکانسهای کم نشانگر این مطلب می باشند که کدام قسمتهای سازه انعطاف پذیرترین قسمتها می باشند. در اکثر موارد مقادیر تقریبی هم می توانند این اطلاعات را فراهم کند. در انجام اغلب تحلیلها، تنها دلیل برآورد بردارهای ویژة کامل و دقیق به علت استفادة جایگزین آنها برای کاهش اندازة سیستم در یک تحلیل بر هم نهی می باشد.

2-1- استفاده از بردارهای رتیز در دینامیک سازه‌ها

1-2-1- روش ریلی برای سیستمهای تک درجة‌ آزادی

ایدة اساسی در روش ریلی که برای تقریب فرکانس ارتعاش یک سیستم تک درجه آزادی استفاده می شود اصل ثبات انرژی (نگهداری) می باشد. انرژی در یک سیستم با ارتعاش آزاد اگر نیروی میرایی برای جذب آن وجود نداشته باشد باید ثابت بماند. بنابراین ماکزیمم انرژی کرنشی در سازة الاستیک باید برابر ماکزیمم انرژی جنبشی جرم باشد. این روش قابل اعمال به هر سیستم چند درجه آزادی که قابل بیان به صورت سیستم تک درجه آزادی توسط استفاده از اشکال تغییر مکانی فرضی رتیز {x} باشد، می باشد.

(1.1)

که در اینجا

K*= سختی کلی (عمومی):

M* = جرم کلی (عمومی):

= فرکانس تقریبی ارتعاش

می باشند.

2-2-1- تحلیل ریلی – رتیز برای سیستمهای چند درجة‌ آزادی

بسط رتیز از روش ریلی که به عنوان تحلیل ریلی – رتیز شناخته می شود به طور گسترده ای برای پیدا کردن تقریبی از کوچکترین مقادیر ویژه و بردارهای ویژة متناظر یک مسأله ارتعاش آزاد استفاده شده است.

(1.2)

که در این رابطه [M],[K] ماتریس‌های سختی و جرم و بردارهای ویژه و مقادیر ویژه یا مجذور فرکانسهای سیستم می باشند.

بردارهای ویژه را می توان توسط تعدادی تابعهای سعی مجزای{Xi} تقریب زد بگونه ای که

[1.3]

که {xi}‌ها توابع شکلی عمومی از قبل تعریف شده سیستم مختصات اصلی می باشند که بردارهای رتیز نامیده می شوند و Yi‌ها دسته ای از پارمترها می باشند. مختصاتهای رتیز که مشخص کنندة سهم مشارکت هر بردار رتیز در حل می باشند.

بردارهای رتیز در (کسترمم) فرم اساس خارج قسمت رایلی جایگزین می شوند و دسته از Yiها، که مقادیر ثابتی بدست می دهد، جستجو می گردند. (روند این کار را می توان در منابع 1.2 و 1.7 یافت) باقی مانده رایلی را می توان به صورت زیر نوشت.

[1.4]

[K]* = [X]T[K][X]

[M]* = [X]T[M][X]

وضعیت پایدار منجر به حل مسأله مقدار ویژه زیر می گردد.

[1.5]

بنابراین تقریب بردارهای ویژه به صورت می گردد.

مسأله مقدار ویژة کاهش یافته ]معادلة [(1.5) باعث رسیدن به r فرکانس تقریبی، ، و اشکال مدی متناظر آنها می گردد، می توان نشان داد. r مقدار ویژة حاصل از تقریب ریلی رتیز حد بالای مقادیر ویژة ناشی از حل دقیق می باشند.

روند تراکم استاتیکی، ترکیب مؤلفه ای مد، تکرار زیر فضا، و سایر روشهای گوناگون می توانند به عنوان تحلیل رتیز درک شوند. تکنیکها تنها در انتخاب بردارهای اساسی رتیز که در تحلیل فرض می شود تفاوت می کنند.

روند رتیز می تواند در فرمول بندی اجزای محدود برای کاهش تعادل دینامیکی استفاده شود. معادلات تعادل دینامیکی برای مدل اجزای محدود و با در نظرگیری {u} که بردار تغییر مکان گروهی است به صورت زیر نوشته می شود.

[1.6]

که در اینجا [M] و [C] و [K] ماتریسهای مربعی nxn برای جرم، میرایی و سختی هستند و {f(s,t)} بردار بارگذاری دینامیکی تحلیل شده بر سازه می باشد که تابعی از فضا و زمان می باشد. علامت نقطه بیانگر مشتق نسبت به زمان می باشد.

بردار تغییر مکان گرهی را می توان توسط ترکیبی خطی از r بردار مستقل خطی رتیز، که r بسیار کوچکتر از n است، به صورت زیر تقریب زد.

[1.7]

که {Xi} بردارهای مستقل پایه و Yi(t) پارامترهای ناشناخته ای هستند که از حل یک سیستم کاهش یافته به صورت زیر بدست می آیند.

[1.8]

هدف از این انتقال بدست آوردن ماتریس جدید سختی، جرم و میرایی یعنی [K]* و [M]* و[C]* است که در اندازه آنها کاهش داده شده(rxr) و پنهای باند کوچکتری نسبت به ماتریسهای اصلی سیستم با حفظ صحت مورد نظر می باشد. بنابراین این ماتریس انتقال باید با توجه به این مطلب انتخاب گردد. موفقیت روش به مقدار بسیار زیادی وابستگی به انتخاب صحیح بردارهای پایه دارد. انواع گوناگونی از این انتخابها در مقالات پیشنهاد شده اند ) 1.1، 1.5، 1.2، 1.13، 1.14). همانگونه که توسط نور (Noor) در (1.12) اشاره شده است دستگاه ایده آل بردارهای پایه دستگاهی است که کیفیت نتایج را حداکثر کند و تلاش کلی به دست آوردن آنها را حداقل نماید.

همانگونه که قبلا بیان شد، یکی از بهترین روشهای کاهش شناخته شده برای مسائل دینامیکی خطی «تکنیک برهم نهی مدی» می باشد که آن شامل انتخاب r مود ارتعاش آزاد بون میرایی که حاصل از حل مسأله مقدار ویژه به عنوان بردارهای پایه می باشد. با این انتخاب ویژه به سادگی می توان نشان دادکه ماتریسهای کاهش یافته[C]* و[M]* و[K]* با فرض میرایی به صورت کسری از میرایی بحرانی، به صورت نظری در می آیند.

(1.9)

سیستم کاهش یافته به صورت r معادلة مستقل بدست می آید که هر کدام به تنهایی قابل انتگرال گیری می باشند. هر چند این که شرایط لازم برای غیر توأمان شدن معادلات دیفرانسیل نهایی در یک روش کاهش نمی باشد.

فقدان عمومیت در کدهای بر مبنای روش ریلی – رتیز به علت سختی موجود در انتخاب توابع کلی می باشد که باعث رسیدن به جوابهایی با درجه ای از صحت مورد انتظار در یک تحلیل کامپیوتری می شوند. این وضعیت به طور چشمگیری محبوبیت استفاده از بردارهای ویژة دقیق را برای برهم نهی مدی افزوده است. هر چند، اخیراً ویلسون و همکاران ) 1.4، 1.17 و 1.18 ( الگوریتم عددی ساده ای را برای ایجاد کلاس خاصی بر بردارهای رتیز که در اینجا به عنوان (WYD Ritz rectors) یا بردارهای رتیز وابسته به بار نامیده می شوند را توسعه داده اند که پاسخهای با صحت بیشتر و زمان کامپیوتری صرف شدة کمتری نسبت به رهیافت سنتی بردار ویژه ای برای طیف وسیعی از مسائل مطالعه شده ارائه می نماید.

1.3 تولید خودکار WYD Ritz recorts برای تحلیل دینامیکی

ترتیب بردارهای وابسته به بار، که برای کاهش اندازة سیستم به کار می روند، با در نظرگیری توزیع مکانی بارگذاری دینامیکی که در استفاده مستقیم از اشکال مدی در نظر گرفته نمی شوند، محاسبه می شود.

الگوریتم در فرم حقیقی خود در شکل 1.1 نشان داده شده است. باید به این نکته توجه نمود که بارگذاری دینامیکی {f(s,t)} در معادلة [1.6] که برای مقداردهی اولیه الگوریتم بازگشتی استفاده شده است،‌ به صورت ضرب بردار مکانی و یک تابع زمان نوشته می‌شود.

{F(s,t)}={f(s)}g(t)

اولین مقدار بردارهای رتیز وابسته به بلر بردار تغییر مکانی است که از تحلیل استاتیکی با استفاده از توزیع مانی بردار بار دینامیکی، {f(s)} به عنوان ورودی، به دست آمده است. سایر بردارها از ارتباط بازگشتی که در آن ماتریس جرم در آخرین بردار رتیز وابسته به بار ضرب می شد به دست می آیند. سپس بردار حاصله به عنوان بار برای تحلیل استاتیکی استفاده می شود. بنابراین پس از آنکه بردار سختی به صورت مثلثی تجزیه شد، فقط لازم است برای هر بردار رتیز مورد نیاز یک بردار بار به صورت استاتیکی تحلیل شود. استقلال خطی بردارهای رتیز وابسته به بار به وسیلة روند تعامد گرام – اشمیت حاصل می شود.

شکل 1.1 الگوریتم برای تولید خودکار بردارهای رتیز وابسته به بار

(فرمول‌بندی اولیه و اصلی که توسط ویلسون، یوان و دیکنز (1.17) پیشنهاد شده است.

1) ماتریسهای [M] و [K] و بردار نیرو {f} موجودند.

سایز سیستم n×n [M]

n×n [K]

1×n [f]

2) تبدیل ماتریس سختی بفرم مثلثی

سیستم n×n [K]=[L]T[D][L]

3) حمل برای اولین بردار

حل برای

نرمال سازی M

4) حل برای بردارهای اضافی

حل برای

محاسبه برای

متعامد سازی

نرمال سازی

5) متعامد سازی برای رتیز وابسته به بار با توجه به ماتریس سختی (دلخواه):

حل برای مسأله مقدار ویژة که داریم

تقریبی

محاسبة بردارهای رتیز وابسته به بار متعامد

تکنیک استفاده شده برای ساختن بردارهای رتیز وابسته به بار باعث ارتونورمال شدن جرم در میان بردارها می گردد به صورتی که[M]* در سیستم کاهش یافته (معادلة [1.8]) قطری بوده و متناظر با ماتریس همانی می شود هر چند که ماتریسهای[K]* و[C]* در حالت کلی پر می باشند.

[1.11]

بنابراین معادلة (1.11) با استفاده از روش گام به گام انتگرال گیری مستقیم و یا با معرفی انتقال اضافی برای کاهش سیستم به یک فرم نظری قابل حل می باشد.

در حالت وجود نسبت میرایی حل مسأله مقدار ویژه

[1.12]

گروهی از مختصاتهای مودی [z] ایجاد می نماید که برای قطری کردن سیستم قابل استفاده می باشند. مقدار مقادیر ویژة دقیق برای سیستم کاهش یافته و مقادیر مجذور فرکانس‌های تقریبی برای سیستم کامل می باشند.

بردارهای ویژه [z] را می توان برای ایجاد دستة نهایی بردارهای رتیز وابسته به بار و متعامد استفاده کرد.

[1.13] [X]=[X][Z]

دسته بردارهای ، نسبت به هر دو ماتریس سختی و جرم در سیستم کامل متعامد می باشند. بعضی از این بردارها می توانند تقریب خوبی از شکلهای مودی دقیق سازه باشند.

در حالت میرایی دلخواه، یک حل از مسأله پیچیدة مقدار ویژه در صورتی که نوار باشد مختصات مودی غیر توأمان شوند لازم است. باید توجه کرد که تلاش عددی لازم برای حل سیستم کاهش یافته از درجة r (معادلة [1.11]) به طول معمول در مقایسه با سیستم اصلی کامل از درجة n (معادلة (1.6)) بسیار ناچیز می باشد.

از آنجایی که بردارهای رتیز وابسته به بار صورت خودکار در کسری از تلاش عددی لازم برای محاسبة بردارهای ویژة سیستم اصلی تولید می شوند، راهکار مؤثری برای کاهش سیستمهای سازه ای سه بعدی مانند، خاک/سازه، سد/مخزن و سکوهای دریایی که تلاش عددی زیادی و گرانبهایی برای حل به طریق مسأله تعداد ویژة کلاسیک لازم دارند می باشد. مزیت مهم دیگر این بردارها قابلیت انجام تحلیل سازه‌ها در کامپیوترهای کوچکتر می باشد.

(1.4) تأثیر فرمول بندی اجزای محدود بر ایجاد بردارهای رتیز وابسته به بار

سه المان بنیادی در ایجاد بردارهای رتیز وابسته به بار، همانگونه که در شکل 1.1 نشان داده شده است، ماتریس‌های جرم، سختی و توزیع بار می باشد. ماتریسهای جرم سختی در حالت عادی متقارن و مثبت معین می باشد هر چند ممکن است دو استثنای زیر به وجود آید:

- اگر سازه بتواند آزادنه به صورت یک جسم صلب حرکت کند (مانند هواپما و یا کشتی) در این حالت ماتریس سختی مثبت و نیمه معین و از رتبة n-b می باشد که b تعداد حرکات جسم صلب مستقل می باشد.

- اگر هیچ جرمی به معنی جابجایی‌های گرهی اختصاص داده نشده باشد ردیفها و ستونهای کاملا صفر در ماتریس جرم ایجاد می شود و ماتریس جرم منفرد خواهد بود.

- برای برخورد با مسأله ماتریس سختی با رتبة معیوب (n-b)، ماتریس مثبت معین جابجا شده ای به صورت زیر

(1.14)

را می توان به جای ماتریس [K] اصلی به کار برد. شیوة بردارهای رتیز وابسته به بار از نظر تئوری همان بردارها را، هر چند با ترتیبی متفاوت، برای هر ماتریس جابجا شده دلخواه به فرم معادلة [1.14] ایجاد خواهد کرد. بردارهای رتیز وابسته به بار به گونه ای خواهند بود مقادیر ویژه ماتریسهای سیستم کاهش یافته و بردارهای ویژه متناظر آنها ریشه‌های مدل فیزیکی را نزدیکتر به نقطة مشخص شده مورد علاقه از طیف ویژة تخمین می زنند.

تعداد کل بردارهای وابسته به بار مستقل که می توانند ایجاد شوند، شامل هرونه مود جسم صلب موجود، برابر رتبة، S ماتریس جرم می باشد. بنابراین، اندازة‌ مسأله کاهش یافته، r، نمی تواند از S بزرگتر باشد.

در پایان باید به این نکته توجه شود که برای سیستم‌های بزرگ و یا کلاس ویژه ای از مسائل، روشهای کاهش مختصات مانند تراکم استاتیکی و تکنیکهای زیر سازه‌سازی می توانند مقدم بر اعمال الگوریتم بردارهای رتیز وابسته به بار، برای دستیابی به ماتریسهای سیستمی([M],[K],{f}) کوچکتر مورد استفاده در روند محاسبات بردارها، استفاده شوند. مزایای این چنین روندهای حل باید با دقت کامل ارزیابی شوند تا تعداد عملیات لازم برای حل را افزایش ندهند. این موضوع و پی‌آمدهای سرو کار داشتن با ماتریس جرم منفرد در فصل 7 بررسی می شوند.

1.4.1 ماتریس جرم

دو روش برای ارائه ماتریس جرم در روش اجزای محدود وجود دارد. اول، یک ماتریس (ثابت) پایدار جرم، بر اساس همان توابع شکلی که برای فرمول بندی ماتریس سختی استفاده شده اند، می تواند مورد استفاده قرار گیرد. با بیان در قالب انرژی، این بدان معناست که ارائه انرژی جنبشی هماهنگ با انرژی پتانسیل می باشد. فرکانسهای ویژه ای که با استفاده از ماتریس جرم ثابت و تحلیل ارتعاش آزاد بدست می آیند همگی فراتر از مقادیر دقیق متناظر بر مبنای تحلیل تئوری حقیقی ریلی – رتیز می باشند.

از آنجایی که رفتار دینامیکی سازه حساسیت کمتری نسبت به توزیع جرم در مقایسه با حساسیت نسبت به توزیع سختی دارد، این امکان نیز وجود دارد که جرم گسترده سازه و مصالح غیر سازه ای را با گروهی از جرمهای نطقه ای که در گره‌ها واقع هستند جایگزین کنیم. اگر این گونه ارائه جرم متمرکز شده انتخاب شود، همانگونه که این حالت عمومی در سازه‌های مهندسی عمران می باشد، مرزی برای فرکانسهای ویژه قابل بیان نمی باشد. صحت نتایج هم ممکن است بهمان خوبی باشد زیرا استفاده از ماتریس متمرکز شده تمایل به افزایش مقسوم علیه در خارج قسمت رایلی، در مقایسه با روش پایدار، دارد و باعث جابجایی پاسخ به سمت نقطه شروع طیف می گردد.

مزایای محاسباتی در استفاده از جرمهای متمرکز شده آشکار هستند. مقدار حافظه مورد احتیاج کمتر و تعداد عملیات کمتر برای تولید بردارهای رتیز وابسته به بار. به علاوه، این مطلب بدین‌گونه قابل بیان شدن است که (1.11) استفاده از فرمول بندی ثابت جرم فقط هنگامی ارزش دارد که وجود ضرایب همزمان سازی جرم مقدار عملیات محاسباتی لازم را به طور قابل ملاحظه ای افزایش ندهد، در غیر این صورت همان مقدار عملیاتی که به حل مسأله اختصاص داده شده، تعداد بیشتری از متغیرهای پایه ممکن است سودمند باشد. چندین امکان در صورت استفاده از جرمهای متمرکز شده در ترکیب بردارهای رتیز وابسته به بار برای انتخاب بردارهای پایه وجود دارد. برای مثال با افزایش تعداد جرم‌های متمرکز شده، در حالیکه تعداد بردارهای رتیز وابسته به بار را ثابت نگه داریم، باید حل دقیق تر و صحیح تری بدون افزایش قابل توجه تلاش عددی ارائه کند.

1.4.2 بردار بارگذاری

صحت مبنای (پایة) بردارهای رتیز وابسته به بارکه قرار است در کاهش مختصات یا بر هم نهی مستقیم برداری استفاده شوند به طبیعت بارگذاری سیستم مرتعش بستگی دارد. در حالت کلی، مقدار هر مؤلفه بردار، همانگونه که توسط مختصات‌های متناظر رتیز وابسته به بار بیان می شود، به ارائه هر دو عامل توزیع مکانی بار که به وسیله بردارهای بنای کوتاه شده و محتوای فرکانس بار اعمالی در مقایسه با فرکانسهای باقی ماندة سازه، بستگی دارد.