فایل بای | FileBuy

مرجع خرید و دانلود گزارش کار آموزی ، گزارشکار آزمایشگاه ، مقاله ، تحقیق ، پروژه و پایان نامه های کلیه رشته های دانشگاهی

فایل بای | FileBuy

مرجع خرید و دانلود گزارش کار آموزی ، گزارشکار آزمایشگاه ، مقاله ، تحقیق ، پروژه و پایان نامه های کلیه رشته های دانشگاهی

بررسی منابع هارمونیک در سیستم های فشار قوی و روشهای کاهش آن

فصل اول در این فصل به بررسی مقدماتی در مورد هارمونیک ها و کیفیت برق داشته و همچنین تعریفی از هارمونیک ارائه شده می نماید در مورد بعضی از استانداردهای هارمونیکی نظیر THD و DIN نیز بحث می نماید
دسته بندی برق
فرمت فایل doc
حجم فایل 173 کیلو بایت
تعداد صفحات فایل 191
بررسی منابع هارمونیک در سیستم های فشار قوی و روشهای کاهش آن

فروشنده فایل

کد کاربری 8044

فهرست

عنوان

صفحه

چکیده................................... 1

مقدمه................................... 2

فصل اول: شناخت و بررسی مقدماتی هارمونیکها 3

(1-1) کلیات............................ 4

(1-2) اعوجاج هارمونیکی.................. 8

(1-3) اعوجاج ولتاژ و جریان.............. 10

(1-4) مقادیر مؤثر و اعوجاج ها هارمونیکی کل 12

(1-5) هارمونیک های مرتبه سه............. 14

فصل دوم : منابع تولید هارمونیکها........ 17

(2-1) مقدمه............................. 18

(2-2) منابع تغذیه تک فاز................ 18

(2-3) مبدل های قدرت سه فاز.............. 21

( 2-3-1 ) مبدل های AC/DC................ 21

(2-4) محرک های DC....................... 23

(2-5) محرکه های AC...................... 24

(2-6) تجهیزات قوس زننده................. 26

(2-6-1) کوره های الکتریکی............... 28

(2-7) جبران کننده های استاتیکی توان راکتیو 31

(2-8) ترانسفورمرهای قدرت................ 33

(2-8-1) اشباع ناشی از افزایش ولتاژ...... 34

(2-10) لامپهای تخلیه ای................. 35

(2-11) سایر منابع....................... 36

فصل سوم: آثار هارمونیکها................ 37

(3-1) مقدمه............................. 38

(3-2 ) خازنها........................... 39

(3-2-1) اثرات مستقیم.................... 39

(3-2-2) اثرات غیرمستقیم................. 40

(3-3) لامپ های روشنایی و المان‌های حرارتی. 44

(3-4) موتورهای آسنکرون................. 45

(3-5) ماشنیهای سنکرون................... 48

(3-6) ترانسفورماتورها................... 49

(3-6-1) افزایش تلفات گردابی در هادیها... 49

(3-6-2) افزایش تلفات هیسترزیس........... 50

(3-6-3) افزایش تلفات گردابی در هسته..... 51

(3-6-4) کاهش توان نامی ترانسفورماتور.... 52

(3-7) عملکرد رله ها..................... 53

( 3-8) وسایل اندازه گیری الکتریکی....... 56

(3-8-1) توان حقیقی...................... 57

(3-8-2) توان راکتیو..................... 58

(3-8-3) توان ظاهری...................... 60

(3-9) کلیدهای فشار قوی.................. 63

(3-10) عایق ها.......................... 65

(3-11) فیوزها........................... 65

(3-12) سیستمهای مخابراتی................ 65

(3-13) تاثیرات دیگر هارمونیکها.......... 66

فصل چهارم: روشهای حذف هارمونیکها........ 67

(4-1) مقدمه............................. 68

(4-2) روشهای چند پالسه.................. 69

(4-2-1) چگونگی حذف هارمونیکها........... 73

(4-2-2) ترانسفورمرهای دو سیم پیچه....... 76

(4-2-3) ترانسفورمرهای تک سیم پیچه....... 79

(4-3) فیلترهای غیر فعال................. 79

(4-3-1) انواع فیلترهای غیر فعال......... 80

(4-3-2) پارامترهای غیر فعال............. 81

(4-3-3) طراحی فیلترهای تک تنظیمه........ 84

(4-3-4) طراحی فیلترهای دو تنظیمه........ 86

(4-3-5) طراحی فیلترهای بالا گذر.......... 87

(4-3-6) طراحی بهینه فیلترهای غیر فعال... 89

(4-3-7) ملاحظات لازم در طراحی و نصب فیلترهای غیر فعال 89

( 4-4) فیلترهای غیر فعال................ 94

( 4-4-1) فیلترهای فعال موازی............ 96

( 4-4-2) فیلترهای فعال هایبرید.......... 98

( 4-5) سایر روشها....................... 103

(4-5-1) روش میکروپروسسوری تزریق جریان... 103

( 4-5-2) استفاده از ماشین سنکرون با مدار تحریک رزونانس........................................ 106

منابع و مؤاخذ........................... 111



چکیده :

فصل اول: در این فصل به بررسی مقدماتی در مورد هارمونیک ها و کیفیت برق داشته و همچنین تعریفی از هارمونیک ارائه شده می نماید. در مورد بعضی از استانداردهای هارمونیکی نظیر THD و DIN نیز بحث می نماید.

فصل دوم: در مورد منابعی که هارمونیک ها را تولید می نمایند بحث می نمایند که هارمونیک ها می توانند از مصرف کننده های فشار ضعیف مانند کامپیوترها و لوازم خانگی باشند تا کوره های الکتریکی و مبدل های AC/DC بزرگ

فصل سوم: در مورد اثرات هارمونیک ها بر روی عملکرد تغییرات و دستگاهها می‌باشد و همچنین در مورد آثار مضر آنها بر روی خازنها، دامپرهای روشنایی، موتورها، ترانسها، رله ها و ... بحث می‌شود.

همچنین بحثی نیز در مورد توان هارمونیکی نیز خواهد داشت.

فصل چهارم: فصل نهائی این پروژه راه کارهای ممکن جهت حذف هارمونیک ها را ارائه می نماید که می توان از روشهای چند پالسه، فیلترهای فعال و غیر فعال و روش تزریق جریان نام برد.


مقدمه :

با پیشرفت تکنولوژی و استفاده روز افزون از تجهیزات با تکنولوژی بالا مانند کامپیوترها و کنترل کننده های برنامه پذیر منطقی ( PLC) که وابستگی بیشتری به انرژی الکتریکی و کیفیت آن دارند، دیگر تنها استفاده از انرژی الکتریکی مورد پذیرش نبوده، بلکه کیفیت و خصوصیات برق تحویلی نیز مهم است. از سوی دیگر گسترش روز افزون استفاده از تجهیزاتی مانند کنترل کننده های سرعت، محرکه های تغییر دهنده فرکانس و خازن هایی که برای اصلاح توان راکتیو به کار می روند، همگی موجب کاش کیفیت برق و ایجاد مشکلات متعدد برای تجهیزات الکترونیکی می شود. لذا با در نظر گرفتن افزایش حساسیت تجهیزات و استفاده روز افزون از تجهیزاتی که موجب کاهش کیفیت برق می شوند، مبحث کیفیت برق روز به روز از اهمیت بیشتری برخوردار می گردد.

شبکه قدرت ایده ال شبکه ای است که در آن انرژی الکتریکی به صورت ولتاژ و جریان سینوسی در فرکانس ثابت و در سطوح ولتاژ مشخص از سوی نیروگاه ها به مراکز مصرف منتقل می شوند. اما در عمل وجود و تجهیزات با مشخصه غیر خطی و بخصوص ادوات الکترونیک قدرت در بخش های مختلف تولید، انتقال و مصرف انرژی الکتریکی، موجب پیدایش اعوجاجات هارمونیکی در شکل موج سینوسی جریان ولتاژ در شبکه قدرت می شود. این موضوع اهمیت آشنایی و مطالعه هارمونیک ها در شبکه قدرت را به عنوان یک شاخه جدید در مهندسی قدرت مطرح می نماید.

لذا در این پروژه سعی بر آن داشتم که از چگونگی تولید هارمونیک ها و اثرات آنها تا راه های کاهش هارمونیک ها مباحثی هر چند اندک بیان شود. امید بر آن است که حق مطلب ادا گردیده باشد.

فصل اول

شناخت و بررسی


مقدماتی هارمونیک ها

(1-1) کلیات

یکی از مسائل و مشکلات کیفیت برق در سیستم های توزیع و انتقال، مسئله هارمونیک ها می باشد که توجه زیادی را به خود جلب نموده است به طوری که مطالب بسیاری را در این خصوص می توان در کتب و مقالات گوناگون جستجو نمود.

اعوجاجات هارمونیکی باعث ایجاد مشکلات خاصی در شبکه های قدرت می شوند. از جلمه این مشکلات می توان به عدم عملکرد مناسب تجهیزات و نیز کاهش عمر و پایان آمدن راندمان دستگاه ها اشاره نمود.

در چنین حالتی مطالعه هارمونیک ها و ارائه یکسری قوائد و مقررات اجتناب ناپذیر خواهد بود. محدد نمودن اعوجاج هارمونیکی هم از نظر شرکتهای برق و هم از نظر مشترکین لازم می باشد. شرکتهای برق باید محدودیتهایی را ارائه نماید تا از آسیب دیدگی تجهیزات مشترکین، اعم از مشترکین خانگی و صنعتی جلوگیری شود. از طرف دیگر با توجه به اینکه ایجاد یک موج کاملاً سینوسی از طرف شرکتهای برق نمی تواند تضمین شود، لذا مشترکین باید اعوجاج ها تولید شده توسط تجهیزات خود را محدود نمایند.

مشترکین برق در صورت وجود هارمونیک ها مشکلات زیادتری از شرکت های برق را تحمل می کنند. مشترکین صنعتی که از محرک های موتور با قابلیت تنظیم سرعت، کوره‌های قوس الکتریکی، کوره های القایی و نظایر آن استفاده می کنند، نسبت به مسائل ناشی از اعوجاج هارمونیکی ضربه پذیر از بقیه مشترکین میباشند.

شرکتهای برق فرض می کنند که موج ولتاژ سینوسی تولید شده در مراکز تولید انرژی الکتریکی، بدون هارمونیک است. در اغلب اعوجاج ولتاژ در سیستم های انتقال کمتر از یک درصد است. به هر حال هر چه به سمت مشترکین نزدیک تر شویم، میزان اعوجاج هارمونیکی بیشتر خواهد شد از سوی دیگر در بعضی بارها، موج جریان، کاملاً از حالت سینوسی خارج شده و دارای اعوجاج زیادی می گردد.

با وجود اینکه در برخی مواقع اعوجاج در سیستم به صورت تصادفی است لیکن اغلب اعوجاج ها به صورت پریرودیک هستند بدین معنی که سیکل های متوالی تقریباً شبیه به هم بوده و ممکن است به آرامی تغییر کنند.

این مفهوم در اصل همان واژه هارمونیک را توصیف می کند. وقتی که استفاده از مبدل های الکترونیک قدرت در اواخر دهه 1970 معمول گردید، توجه بسیاری از مهندسین در مورد توانایی پذیرش اعوجاج هارمونیکی توسط شبکه های قدرت را برانگیخت. پیش بینی های مأیوس کننده ای از سرنوشت سیستمهای قدرت در صورت اجازه استفاده از این تجهیزات انجام گرفت.

در حالی که بعضی از این نگرانی ها احتمالاً بیش از آنچه اهمیت داشت مورد توجه قرار گرفت، لیکن بررسی مفهوم کیفیت برق مدیون این افراد به دلیل پیگیری آنها روی این مسأله جدید می باشد. بررسی مسائل هارمونیک ها منجر به تحقیقاتی گردید که نتایج آن نقطه نظرات بسیاری را در خصوص کیفیت برق ایجاد نمود. به نظر برخی از محققین، اعوجاج هارمونیکی هنوز هم مهمترین مسأله کیفیت برق می باشد. مسائل هارمونیکی با بسیاری از قوانین معمولی طراحی سیستم های قدرت و عملکرد آن تحت فرکانس اصلی، مغایر است.

بنابراین در این خصوص با پدیده های ناآشنایی روبه رو می شویم که نیاز به ابزارهای پیچیده و تجهیزات پیشرفته برای حل مشکلات و تحلیل آنها دارد. در اینجا باید تمایزی بین مسأله هارمونیک ها و حالتهای گذرا قائل شد. در واقع به جای بسیاری از اعوجاج‌ها که گذرا هستند هارمونیک ها مورد مؤاخذه قرار می گیرند.

اندازه گیری هر پدیده ممکن است شکل موج اعوجاجی به فرکانس های بسیار بالا را نشان دهد. گر چه اعوجاج ها گذرا نیز شامل مؤلفه های فرکانس بالا می باشد، اما حالت های گذرا و هارمونیک ها پدیده های متمایزی بوده و به صورت متفاوتی بررسی و تحلیل می گردند.

حالتهای گذرا، دارای فرکانس های بالایی می باشند و تنها لحظه ای پس از یک تغییر ناگهانی در سیستم قدرت به وجود می آیند. این فرکانسها لزوماً فرکانس هارمونیکی نیستند و به عنوان مثال می توانند فرکانس طبیعی سیستم در لحظه کلید زنی باشند که ارتباطی با فرکانس مؤلفه اصلی سیستم ندارد. طبق تعریف، هارمونیک ها در حالت ماندگار اتفاق می افتند و مضرب صحیحی از فرکانس مؤلفه اصلی می باشند.

موجهای اعوجاج یافته که دارای هارمونیک هستند، به طور پیوسته وجود داشته و یا حداقل برای چندین ثانیه باقی می مانند. گذرا ها معمولاً در طی چندین سیکل از بین می روند. حالت گذرا در ارتباط با یک تغییر در سیستم مانند کلید زنی خازن ها رخ می‌دهد، در حالی که هارمونیک‌ها همراه با عملکرد پیوسته بار به وجود می آیند. حالتی که این تمایز را از بین می برد برق دار کردن ترانسفورماتور است. این پدیده گذرا به شمار می آید ولی موج اعوجاجی قابل ملاحظه ای را به مدت چند ثانیه تولید می کند. می تواند موجب ایجاد تشدید در سیستم شود. اعوجاج هارمونیکی یک پدیده جدید در سیستم های قدرت به شمار نمی‌رود. نگرانی ناشی از اعوجاج در بسیاری از ادوار در شبکه های جریان متناوب وجود داشته و دنبال شده است. جستجوی منابع و مطالب تکنیکی دهه‌های قبل نشان می دهد که مقالات مختلفی در رابطه با این موضوع انتشار یافته است. اولین منابع هارمونیکی شناخته شده، ترانسفورماتور ها بودند و اولین مشکل در سیستم‌های تلفن به وجود آمد. استفاده گروهی و به تعداد زیاد از لامپهای قوس الکتریک نیز به دلیل مؤلفه های هارمونیکی، خود توجهات بسیاری را برانگیخت ولی اهمیت هیچکدام از موارد فوق به اندازه اهمیت مسأله مبدل های الکترونیک قدرت در سالهای اخیر نبوده است. اعوجاج های هارمونیکی تولید شده در شبکه های قدرت منشأ داخلی دارند. برای مثال ژنراتورها، ترانسفورماتورها و تجهیزات تریستوری کنترل شده مانند پست های تبدیل که در سیستم های HVDC استفاده می‌شوند می‌توانند باعث ایجاد اعوجاج های هارمونیکی گردند. خوشبختانه در طی این سالها پژوهشگران متوجه شده‌اند که اگر سیستم انتقال به نحو مناسبی طراحی گردد. به نحوی که بتواند مقدار توان مورد نیاز بارها را به راحتی تأمین نماید، احتمال ایجاد مشکل ناشی از هارمونیکها برای سیستم قدرت بسیار کم خواهد بود گر چه این هارمونیک ها می توانند موجب مسائلی در سیستمهای مخابراتی شوند. اغلب در سیستم های قدرت، مشکلات زمانی بروز می کنند که خازن های موجود در شبکه باعث ایجاد تشدید در یک فرکانس هارمونیکی گردند. در این شرایط اغتشاشات و اعوجاج ها، بسیار بیش از مقادیر معمول خواهد بود. امکان ایجاد ای مشکلات در مورد مراکز کوچک مصرف نیز وجود دارد ولی شرایط بدتر در سیستم های صنعتی به دلیل درجه بالایی از تشدید رخ می دهد.

(1-2) اعوجاج هارمونیکی

اعوجاج هارمونیکی در شبکه های قدرت ناشی از عناصر غیر خطی است. عنصر غیر خطی عنصری است که جریان آن متناسب با ولتاژ اعمالی نمی باشد. افزایش چند درصدی ولتاژ ممکن است باعث شود که جریان دو برابر شده و نیز شکل موج جریان فرم دیگری به خود بگیرد. این حالت، مورد ساده ای از تولید اعوجاج در سیستم قدرت می باشد.

همانطور که مشاهده می شود هر شکل موج اعوجاجی پریودیک را می توان به صورت جمع موجه ای سینوسی بیان نمود. یعنی هنگامی که شکل موج از یک سیکل به سیکل دیگر تغییر نکند، این موج را می توان به صورت جمع امواج سینوسی خالص که در آن فرکانس هر موج، ضریب صحیحی از فرکانس اصلی موج اعوجاجی است را نمایش داد.

این موجهای سینوسی که فرکانس آنها ضریب صحیحی از فرکانس اصلی می‌باشند را هارمونیک های مؤلفه اصلی می نامند. جمع این سینوسی ها به سری فوریه مربوط است، زیرا این مفهوم ریاضی اولین بار توسط فوریه ریاضیدان فرانسوی مورد توجه قرار گرفت.

مزیت اصلی استفاده از سری فوریه در نمایش شکل موجهای هارمونیکی، سادگی به دست آوردن پاسخ سیستم به یک ورودی سینوسی است. همچنین در این حالت تکنیکهای معمولی حل شبکه در حالت ماندگار نیز قابل استفاده خواهد بود. در این روش، سیستم برای هر هارمونیک جداگانه بررسی شده و سپس خروجی ها در هر فرکانس ترکیب می گردند با پاسخ لازم یعنی شکل موج خروجی به دست آید.

وقتی که دو نیم سیکل مثبت و منفی یک موج شبیه یکدیگر باشند، سری فوریه فقط شامل هارمونیک های فرد است. این مطالب مطالعه روی هارمونیک ها را ساده تر می سازد، زیرا اغلب وسایل هارمونیک زا در برابر هر دو نیم سیکل مثبت و منفی رفتار یکسانی را از خود نشان می دهند. در حقیقت وجود هارمونیک های زوج اغلب نشان دهنده اشکالی در سیستم است. این اشکال می تواند ناشی از بار و یا ترانسدیوسر (که برای اندازه گیری استفاده می شود) باشد. استثنائاتی در این مورد

مانند یکسو کننده های نیم موج و کوره های قوس الکتریک که در آن بروز قوس به صورت اتفاقی می باشد نیز وجود دارد.

معمولاً، دامنه هارمونیک های مرتبه بالا( بالاتر از 50 ام) در سیستم های قدرت ناچیز می باشند. البته این هارمونیک ها می توانند سبب اختلال در عملکرد وسایل الکتریکی قدرت پایین شوند، لیکن معمولاً آسیبی به سیستم های قدرت وارد نمی آورند.

اگر سیستم قدرت را به عناصر سری و موازی ( همچنانکه در عمل هستند) تقسیم کنیم، بخش عمده ای از عناصر غیر خطی در سیستم قدرت جزء عناصر موازی محسوب می شوند (بارها). امپدانس های سری در سیستم قدرت ( امپدانس اتصال کوتاه بین منبع و بار) معمولاً خطی می باشند. شاخه موازی ( امپدانس مغناطیس کننده ) در معادل ترانسفورماتور، منبع تولید هارمونیک می باشد. این جمله به این معنا نیست که تمام مشترکین که اعوجاج هارمونیکی بر آنها اعمال می شود. خود منبع تولید هارمونیک هستند بلکه باید گفت که اعوجاج هارمونیکی بعضی از مشترکین و یا از ترکیبی از آنها معمولاً می توانند عامل تولید هارمونیک باشد.

(1-3) اعوجاج ولتاژ و جریان

کلمه هارمونیک غالب بدون هیچگونه کلمه توصیفی دیگر و به تنهایی استفاده می شود. برای مثال، بسیار شنیده می شود که یک محرکه موتور با قابلیت تنظیم سرعت یا یک کوره القایی به دلیل وجود هارمونیک ها نمی توانند به شکل مناسبی کار کنند. چرا این مسأله پدید آمده است؟ جواب می تواند یکی از موارد زیر باشد:

- هارمونیک ولتاژ آنقدر زیاد است که سیستم کنترل زاویه آتش به خوبی عمل نمی کند.

- هارمونیک جریان زیادتر از ظرفیت بعضی از تجهیزات در شبکه تغذیه ( مانند ترانسفورماتور و موتور) است که باید در زیر قدرت نامی خود کار کنند.

- هارمونیک ولتاژ زیاد است زیرا هارمونیک جریانی ناشی از آن وسیله زیاد می باشد.

همچنانکه این موارد نشان می دهد دلایل و اثرات جداگانه ای برای ولتاژ و جریان و همچنین روی بعضی روابط بین این دو وجود دارد. بنابراین، واژه ها هارمونیک به تنهایی مبهم بوده و نمی توان به کمک آن به صورت دقیق یک مسئله را توصیف کرد.

بارهای غیر خطی، منبع تولید هارمونیک های جریان هستند و باعث تزریق این هارمونیک ها به شبکه قدرت می شوند. برای بیشتر مطالعات، کافی است که بارهای تولید کننده هارمونیک در سیستم را به صورت منبع جریان مدل سازی نمود. البته استثنائاتی در این زمینه وجود دارد که در ادامه توضیح داده خواهد شد. اعوجاج ولتاژ در اثر عبور جریان اعوجاجی از امپدانس سری و خطی سیستم انتقال می گردد.

گرچه در این جا فرض شده است که منبع فقط شامل ولتاژ با فرکانس اصلی است، لیکن جریان های هارمونیکی عبور کننده از امپدانس سیستم باعث ایجاد افت ولتاژ برای هر هارمونیک خواهد شد. و در نتیجه باعث ایجاد ولتاژ هارمونیکی در دو سربار می گردد. مقدار اعوجاج ولتاژ بستگی به امپدانس جریان دارد. با فرض این که اعوجاج شینه در حد قابل قبولی باقی بماند ( مثلاً کمتر از 5 درصد)، مقدار جریان هارمونیکی تولید شده توسط بار تقریباً برای هر سطح باری ثابت است.

در حالی که هارمونیک های جریان ایجاد شده توسط بار در نهایت باعث اعوجاج ولتاژ می گردند. لیکن باید اشاره نمود که بار هیچگونه کنترلی روی اعوجاج ولتاژ ندارد. یک بار یکسان در دو محل مختلف یک سیستم قدرت دو مقدار متفاوت اعوجاج ولتاژ ایجاد می کند. درک این حقیقت پایه ای برای تقسیم مسئولیت ها در کنترل هارمونیک ها خواهد بود. مقدار هارمونیک جریان تزریق شده به سیستم می بایستی در نقطه اتصال مشترک به شبکه کنترل گردد.

با فرض این که هارمونیک جریان تزریقی در حد مجاز است، اعوجاج ولتاژ را می توان با کنترل بر روی امپدانس سیستم در حد مجاز قرار داد.


گزارش کاراموزی هارمونیک های بانکهای خازنی

گزارش کاراموزی هارمونیک های بانکهای خازنی در 44 صفحه ورد قابل ویرایش
دسته بندی برق
بازدید ها 7
فرمت فایل doc
حجم فایل 149 کیلو بایت
تعداد صفحات فایل 44
گزارش کاراموزی هارمونیک های بانکهای خازنی

فروشنده فایل

کد کاربری 6017
کاربر

گزارش کاراموزی هارمونیک های بانکهای خازنی در 44 صفحه ورد قابل ویرایش

مقدمه :

از دیر باز، بکارگیری بانک های خازنی بعنوان یک ضرورت در طراحی فیدرهای توزیع پذیرفته شده است . ملاحظاتی که در طراحی منظور می‎شوند معمولاً فاکتورهای سنتی نظیر حفظ ولتاژ ، ضریب قدرت و آزادسازی ظرفیت می‎باشد . اما از آنجا ییکه در سیستم های مشترکین امروزی از ادوات الکترونیک قدرت استفاده می‎شود بنابراین طراحی شبکه توزیع در آینده شامل ملاحظات مربوط به کیفیت توان نیز خواهد بود .

کلمه «کیفیت توان » معانی مختلفی دارد ، شاید به تعداد توصیفاتی که برای بیان اثرات آن بر عملکرد شبکه بکار می روند .

شرکت برق ممکن است کیفیت توان را به عنوان قابلیت اطمینان توصیف کند وبا استناد به آمار ادعا کند که سیستم به میزان 95% .99 قابل اطمینان می‎باشد . اغلب کارخانجات سازنده ، کیفیت توان را به عنوان مشخصات مورد انتظار منبع تغذیه تعریف می کنند . بنابراین چنین تعریفی از دیدگاه سازندگان مختلف کاملاً متفاوت است که از مشکلات کیفیت توان تاثیر می پذیرد و بهترین تعریف ، تعریفی است که در آن دیدگاه مصرف کننده نیز لحاظ شده باشد . با توجه به این موضوع ، تعریف زیر اغلب بکاربرده می‎شود :

« هر مشکل بوجود آمده بر روی توان که ناشی از ولتاژ ، جریان و تغییرات فرکانس بوده و منجر به خروج یا عملکرد نامطلوب تجهیزات مشترکین گردد ، یک مشکل کیفیت توان محسوب می‎شود » .

وقایع زیادی در سیستم موجب ایجاد مسأله کیفیت توان می گردند . اغلب تجزیه و تحلیل این وقایع مشکل می‎باشد بدلیل این حقیقت که اختلال حاصل ممکن است مربوط به عملیات کلید زنی یا خطای تجهیزات شبکه قدرت در محلی که صدها مایل با نقطه تحت بررسی فاصله دارد ، ایجاد شده باشد .

در این فصل اثر بانک های خازنی در ایجاد اغتشاشات کیفیت توان در شبکه توزیع ، بررسی می‎گردند.

کلید زنی مکرر بانک های خازنی در سیستم توزیع همراه با افزایش بکارگیری تجهیزات حساس توسط مصرف کنندگان توان ، توجه ویژه به رخداد وقایع زیر را لازم می دارد :

1.افزایش گذراهای کلید زنی خازنی ؛

2.قطع ناخواسته راه اندازی تنظیم کننده سرعت ؛

این امر بخصوص در شرایطی که شرکت ها جرایم سنگینی برای ضریب قدرت قرار داده و به موجب آن ، مشترکین را به نصب خازنهای تصحیح ضریب قدرت ترغیب می نمایند ، بسیار مهم است .

امروزه ، بارهای غیرسنتی از قبیل راه اندازهای تنظیم کننده سرعت بخاطر ویژگی هایی نظیر بهبود بازه و انعطاف پذیریشان ، به تعداد زیاد بکاربرده می‎شوند . این نوع بار به اضافه ولتاژهای ناشی از کلید زنی خازنی بسیار حساس است .

عمده ترین روشهایی که برای کنترل این گذراها بکار می روند عبارتند از: استفاده از روشهای کنترل کلید زنی ( وصل سنکرون ، وصل با مقاومت /سلف ) و یا بکارگیری اندوکتانسهای سری که اغلب همانند یک Chock رفتار می کنند .

بعلاوه ، این بارها اغلب جریان هارمونیکی زیادی را تولید نموده و می‎توانند سطوح اعوجاج ولتاژ غیر قابل قبولی را در شبکه توزیع صنعتی و سیستم برقرسانی ایجاد نماید . ترکیب خازنها و امپدانس سطح اتصال کوتاه سیستم با هم رزونانس ایجاد کرده و می‎تواند سطوح هارمونیکی را به بالاتر از حد قابل قبول افزایش دهد . معمول ترین راه حل برای مسائل هارمونیکی ، بکارگیری فیلترهای هارمونیکی می باشند .





2-5) کلید زنی خازن توزیع :

الف - مرور کلی:

کلیدزنی خازنی واقعه ای معمول در سیستم های توزیع بوده و گذراهای ناشی از آن ، عموماً برای تجهیزات شبکه مشکل ساز نمی باشند . اما اگر مشترک خازنهای تصحیح ضریب قدرت فشار ضعیف داشته باشد ، این گذراها می‎توانند در تأسیسات وی افزایش یابند ، بعلاوه حتی اگر مشترکین از این خازنها استفاده نکنند ممکن است در اثر این گذراها ، قطع ناخواسته راه اندازهای تنظیم کننده سرعت ، اتفاق افتد . از آنجائیکه ولتاژ خازن نمی تواند بصورت آنی تغییر کند ، انرژی دار کردن یک بانک خازنی ، افت سریع ( به سمت صفر ) در ولتاژ سیستم ایجاد می‎کند که بلافاصله بدنبال آن ، یک ولتاژ بازیابی سریع ( Overshoot ) و نهایتاً گذرای نوسانی بر روی شکل موج اصلی ایجاد می گردد .

پیک دامنه ولتاژ ، به ولتاژ سیستم در لحظه انرژی دار شدن بستگی دارد . در بدترین شرایط ، پیک ولتاژ می‎تواند به دو برابر پیک ولتاژ سیستم برسد . اما معمولاً دامنه به علت وجود بارهای متصل به سیستم و میراسازی در سیستم ( وجود المانهای مقاومتی ) کمتر از این مقدار خواهد بود . در شبکه‎های توزیع معمول ، سطوح اضافه ولتاژ در محدودة 1/1تا 6/1 پریونیت می باشند. معمولاً فرکانسهای گذاری ناشی از کلید زنی خازنی در شبکه توزیع در حدود (hz ) 10000-300 است .

اضافه ولتاژهای گذرا شبکه توزیع را تهدید نمی کنند ، زیرا دامنه های پیک شان پایین تر از سطحی است که تجهیزات حفاظتی ضربه ای از قبیل برقگیر را وادار به عمل نماید . اما این گذراها به دلیل فرکانس نسبتاً پایینی که دارند از ترانسفورماتور کاهنده عبور کرده و بار مشترکین را تحت تأثیر قرار می دهند . اضافه ولتاژهای ثانویه ایجاد شده ، موجب افزایش قابل توجه ولتاژ یا قطع ناخواسته در راه اندازهای تنظیم کننده سرعت می‎شوند .

مشکلات کیفیت توان ناشی از کلیدزنی خازن توزیع شامل خروج و یا خرابی تجهیزات مشترکین ( بخاطر اضافه ولتاژ زیاد ) ، قطع ناخواسته راه اندازهای تنظیم کننده سرعت و یا خاموشی تجهیزات در سایر فرایندها ( ناشی از اضافه ولتاژ ایجاد شده روی باس dc ) ، خروج TVSS و بروز مشکلات در شبکه کامپیوتری می‎باشد .

خطی ( نظیر راه اندازهای تنظیم کننده سرعت ) می باشند .

1.اندازه گیری هارمونیکی : هدف از اندازه گیری ، مشخص کردن رفتار منابع هارمونیکی و فراهم نمودن داده های مقدماتی درباره شدت مسأله اعوجاج است . این داده های اندازه گیری شده ، برای تائید جزئیات مدلهای کامپیوتری و محاسبات دستی ارزش زیادی دارند .

آشکار سازی اولیه مسائل هارمونیکی می‎تواند با استفاده از دستگاههای اندازه گیری جدید که نقطه پیک شکل موجها را نشان می‎دهد یا با استفاده از ابزارهایی که اطلاعاتی در رابطه با نسبت مقدار مؤثر کل به مقدار مؤثر مولفه اصلی ارائه می دهند ، انجام می‎شود .

اغلب ، اندازه گیری ها در شبکه های توزیع بدلیل نیاز به مبدل ، بسیار مشکل تر از اندازه گیری در سمت مصرف کننده ( کارگاه صنعتی ) است . احتمالاً کلاس های موجود CT ها و PT های اندازه گیر ، برای بدست آوردن داده های هارمونیکی استفاده می‎شوند .

2.محاسبات و شبیه سازی : از آنجائیکه روشهای نمایش مولفه های مهم در سیستم قدرت توسعه یافته و دقتشان از طریق مقایسه با داده های اندازه گیری شده مورد تائید قرار گرفته است ، به کمک آنها ، محدوده وسیعی از شرایط ایجاد شده قابل تشخیص گردیده است . از جمله می‎توان ساختار سیستم هایی را که ایجاد رزونانس می کنند ، شناسائی نموده و همچنین ساختارهای مختلف می‎توانند از این نظر مورد آزمون قرار گیرند .

شبیه سازی در حوزه فرکانس ( مشخصه امپدانس بر حسب فرکانس ) قادر است مشخص کند که آیا ساختار سیستم می‎تواند باعث ایجاد مسائل هارمونیکی به دلیل شرایط رزونانسی بشود یا خیر ( شکل (3-4) ) و شبیه سازی اعوجاج هارمونیکی برای ارزیابی تأثیر فیلترهای هارمونیکی یا تکنیک های دیگر در کاهش هارمونیک بکار برده می‎شوند .

3.توسعه راه حل : سطوح ولتاژ هارمونیکی تعیین شده از طریق شبیه سازی و اندازه گیری با حدود توصیه شده مقایسه می‎شوند . اگر سطوح اعوجاج ولتاژ هارمونیکی در محدودة قابل قبول نباشد ، مشخصه پاسخ فرکانس دستگاهها یا سیستم می‎تواند با عوض کردن مقدار خازن یا مکان آن و یا با نصب فیلترهای هارمونیکی تغییر داده شود .

د ـ اثر هارمونیک ها بر ضریب قدرت :

روش سنتی تصحیح ضریب قدرت در سیستم قدرت و در تاسیسات مصرف کنندگان,

استفاده از بانک های خازنی موازی بوده است . این مسأله از آن حقیقت ناشی می‎شود که اغلب بارهای سیستم در فرکانس اصلی ، جریان پس فاز از شبکه می کشند . خازنها ، در فرکانس اصلی ، جریان پیش فاز می کشند و لذا می‎توانند برای جبران سازی جریانهای کشیده شده توسط بارهای القائی بکار روند .

این مشخصات پیش فازی و پس فازی جریان براین فرض استوار است که بارهای روی سیستم ، مشخصه ولتاژ - جریان خطی دارند و اعوجاج هارمونیکی ولتاژ و جریان اهمیت چندانی ندارد . با این فرضیات ، ضریب قدرت با ضریب قدرت جابجایی(DPF) برابر است . محاسبه ضریب قدرت جابجایی با استفاده از مثلث ضریب قدرت انجام می‎شود و با رابطه زیر بصورت خلاصه بیان می‎گردد :

(2-5)

اعوجاج هارمونیکی در جریان و یا ولتاژ که بوسیله بارهای غیر خطی در سیستم ایجاد می‎شود ، روش محاسبه ضریب قدرت را تغییر می‎دهد .

ضریب قدرت صحیح بصورت نسبت توان حقیقی به ولت آمپر کل در مدار ، تعریف می‎شود .

(3-5)

مقدارTPF ، سنجشی است از اینکه توان حقیقی با چه بهره وری واقعی بکار برده

است . از آنجاییکه خازنها تنها در فرکانس نامی تولید توان راکتیو می کنند ، لذا

نمی توانند در حضور هارمونیک TPF را اصلاح کنند . در واقع ، خازنها با ایجاد شرایط رزونانس اعوجاج هارمونیکی ولتاژ و جریان را تقویت کرده و TPF بدتری را بوجود می آورند . به دلیل اینکه جرایم مربوط به ضریب قدرت سالیانه تقریباً بطور کلی برDPF پایه است ،DPF هنوز برای بسیاری از مشترکین صنعتی اهمیت زیادی دارد .

هـ - روشهای حل مسائل هارمونیکی :

اغلب مشکلات مربوط به هارمونیک ها ، ابتدا در بانک های خازنی خودشان را نشان می دهند . مهمترین دلیل این موضوع آن است که خازنها مدارهای تشدید تشکیل

امواج کلید زنی

جریان هجومی

ولتاژ آنی بازگیری جرقه

تخلیه / بازبست ولتاژ



بسته به طراحی ساختاری اساسی ، حدود پایداری در مقابل اضافه ولتاژ ، اضافه جریان و هارمونیکها برای دور کردن خازن از خرابی بسیار مهم است.

اساسا خازن ها امواج کلید زنی تولید می کنند که عموما به عنوان جریان هجومی و اضافه ولتاژ آنی دسته بندی می شوند.

جریان هجومی پدیده ای است که هنگام به مدار وصل کردن خازن ها رخ می دهد. امپدانس ارائه شده توسط خازن طبیعتا بسیار کم و مقاومتی است. این امر منجر به جریان هجومی به بزرگی 50 تا 100 برابر جریان اسمی می شود که از خازن عبور می کند ، اما چرا از خازن؟ زیرا امپدانس ترانسفورماتور در زمان روشن کردن خازن ها فقط در مقابل شار جریان مقاومت می کند.

این امر هنگامی پیچیده تر می گردد که در ترکیب موازی بانک خازنی ممکن است جریان هجومی کلید زنی به سطحی بالاتر از 200 تا 300 برابر جریان اسمی برسد. این جریان هجومی نتیجه تخلیه خازن های از پیش شارژ شده موازی با آن می باشد. در زیر این مطلب نشان داده شده است.نوعا جریان هجومی علاوه بر تخریب در شکل موج جریان سبب تخریب در شکل موج ولتاژ می شود.





در هنگام خاموش کردن (از مدار خارج کردن) خازن ها ، بسته به شارژ ذخیره شده در آن ، اضافه ولتاژ ناگهانی بالاتری در زمان خاموش کردن خازن ها بوجود خواهد آمد که ممکن است موجب پدید آمدن جرقه در پایه ها شود.

هنگامی که خازن خاموش می شود شار الکتریکی در خود نگه می دارد و بوسیله مقاومتهای تخلیه ، تخلیه (Discharge) می شود. مدت زمان تخلیه عموما بین 30 تا 60 ثانیه می باشد. تا زمانی که تخلیه بشکل موثری صورت نگرفته نمی توان خازنها را به مدار باز گرداند. هرگونه بازبست خازن قبل از تخلیه کامل دوباره موجب افزایش جریان هجومی می شود.

علاوه بر دستگاه های مسدود کننده هارمونیک ها که با صحت خازن ها نسبت مستقیم دارند ، و در سر خط بعدی تشریح می شوند ، دستگاه های تحلیل برنده امواج کلید زنی مثل جریان هجومی ، اضافه ولتاژ آنی و غیره نیاز دارند که بطور دقیق تعریف و بررسی شوند.

دستگاه های مسدود کننده هارمونیک ها:

برای کاربری سالم خازن ها لازم است که فرکانس تشدید مدار LC (سلف – خازن) که شامل ادوکتانس بار و خازنهای اصلاح ضریب توان می شود ، به فرکانسی دور از کمترین فرکانس هارمونیک تغییر داده شود. برای مثال هارمونیک هایی که در سامانه تولید می شوند و خازن های قدرت را متاثر می سازند ، هارمونیک های پنجم ، هفتم ، یازدهم ، سیزدهم و غیره هستند. پایین ترین هارمونیکی که بر خازن ها تاثیر می گذارد هارمونیک پنجم است که در فرکانس 250 هرتز دیده می شود. اساسا اگر خازن ها با سلف ها موازی شده باشند ، انتخاب مقدار اندوکتانس به شکل زیر است :

ترکیب سری LC (سلف – خازن) در فرکانسی زیر 250هرتز تشدید می کند . بنابراین در همه فرکانس های هارمونیک ها ترکیب سری سلف و خازن مانند یک ترکیب سلفی عمل خواهد کرد و امکان تشدید برای هارمونیک پنجم یا هر هارمونیک بالاتری از بین می رود. شکل زیر نامیزان سازی (De – Tuning) خازن ها را نشان می دهد.


گزارش کاراموزی هارمونیک های بانکهای خازنی

گزارش کاراموزی هارمونیک های بانکهای خازنی در 44 صفحه ورد قابل ویرایش
دسته بندی برق
بازدید ها 2
فرمت فایل doc
حجم فایل 149 کیلو بایت
تعداد صفحات فایل 44
گزارش کاراموزی هارمونیک های بانکهای خازنی

فروشنده فایل

کد کاربری 6017
کاربر

گزارش کاراموزی هارمونیک های بانکهای خازنی در 44 صفحه ورد قابل ویرایش

مقدمه :

از دیر باز، بکارگیری بانک های خازنی بعنوان یک ضرورت در طراحی فیدرهای توزیع پذیرفته شده است . ملاحظاتی که در طراحی منظور می‎شوند معمولاً فاکتورهای سنتی نظیر حفظ ولتاژ ، ضریب قدرت و آزادسازی ظرفیت می‎باشد . اما از آنجا ییکه در سیستم های مشترکین امروزی از ادوات الکترونیک قدرت استفاده می‎شود بنابراین طراحی شبکه توزیع در آینده شامل ملاحظات مربوط به کیفیت توان نیز خواهد بود .

کلمه «کیفیت توان » معانی مختلفی دارد ، شاید به تعداد توصیفاتی که برای بیان اثرات آن بر عملکرد شبکه بکار می روند .

شرکت برق ممکن است کیفیت توان را به عنوان قابلیت اطمینان توصیف کند وبا استناد به آمار ادعا کند که سیستم به میزان 95% .99 قابل اطمینان می‎باشد . اغلب کارخانجات سازنده ، کیفیت توان را به عنوان مشخصات مورد انتظار منبع تغذیه تعریف می کنند . بنابراین چنین تعریفی از دیدگاه سازندگان مختلف کاملاً متفاوت است که از مشکلات کیفیت توان تاثیر می پذیرد و بهترین تعریف ، تعریفی است که در آن دیدگاه مصرف کننده نیز لحاظ شده باشد . با توجه به این موضوع ، تعریف زیر اغلب بکاربرده می‎شود :

« هر مشکل بوجود آمده بر روی توان که ناشی از ولتاژ ، جریان و تغییرات فرکانس بوده و منجر به خروج یا عملکرد نامطلوب تجهیزات مشترکین گردد ، یک مشکل کیفیت توان محسوب می‎شود » .

وقایع زیادی در سیستم موجب ایجاد مسأله کیفیت توان می گردند . اغلب تجزیه و تحلیل این وقایع مشکل می‎باشد بدلیل این حقیقت که اختلال حاصل ممکن است مربوط به عملیات کلید زنی یا خطای تجهیزات شبکه قدرت در محلی که صدها مایل با نقطه تحت بررسی فاصله دارد ، ایجاد شده باشد .

در این فصل اثر بانک های خازنی در ایجاد اغتشاشات کیفیت توان در شبکه توزیع ، بررسی می‎گردند.

کلید زنی مکرر بانک های خازنی در سیستم توزیع همراه با افزایش بکارگیری تجهیزات حساس توسط مصرف کنندگان توان ، توجه ویژه به رخداد وقایع زیر را لازم می دارد :

1.افزایش گذراهای کلید زنی خازنی ؛

2.قطع ناخواسته راه اندازی تنظیم کننده سرعت ؛

این امر بخصوص در شرایطی که شرکت ها جرایم سنگینی برای ضریب قدرت قرار داده و به موجب آن ، مشترکین را به نصب خازنهای تصحیح ضریب قدرت ترغیب می نمایند ، بسیار مهم است .

امروزه ، بارهای غیرسنتی از قبیل راه اندازهای تنظیم کننده سرعت بخاطر ویژگی هایی نظیر بهبود بازه و انعطاف پذیریشان ، به تعداد زیاد بکاربرده می‎شوند . این نوع بار به اضافه ولتاژهای ناشی از کلید زنی خازنی بسیار حساس است .

عمده ترین روشهایی که برای کنترل این گذراها بکار می روند عبارتند از: استفاده از روشهای کنترل کلید زنی ( وصل سنکرون ، وصل با مقاومت /سلف ) و یا بکارگیری اندوکتانسهای سری که اغلب همانند یک Chock رفتار می کنند .

بعلاوه ، این بارها اغلب جریان هارمونیکی زیادی را تولید نموده و می‎توانند سطوح اعوجاج ولتاژ غیر قابل قبولی را در شبکه توزیع صنعتی و سیستم برقرسانی ایجاد نماید . ترکیب خازنها و امپدانس سطح اتصال کوتاه سیستم با هم رزونانس ایجاد کرده و می‎تواند سطوح هارمونیکی را به بالاتر از حد قابل قبول افزایش دهد . معمول ترین راه حل برای مسائل هارمونیکی ، بکارگیری فیلترهای هارمونیکی می باشند .





2-5) کلید زنی خازن توزیع :

الف - مرور کلی:

کلیدزنی خازنی واقعه ای معمول در سیستم های توزیع بوده و گذراهای ناشی از آن ، عموماً برای تجهیزات شبکه مشکل ساز نمی باشند . اما اگر مشترک خازنهای تصحیح ضریب قدرت فشار ضعیف داشته باشد ، این گذراها می‎توانند در تأسیسات وی افزایش یابند ، بعلاوه حتی اگر مشترکین از این خازنها استفاده نکنند ممکن است در اثر این گذراها ، قطع ناخواسته راه اندازهای تنظیم کننده سرعت ، اتفاق افتد . از آنجائیکه ولتاژ خازن نمی تواند بصورت آنی تغییر کند ، انرژی دار کردن یک بانک خازنی ، افت سریع ( به سمت صفر ) در ولتاژ سیستم ایجاد می‎کند که بلافاصله بدنبال آن ، یک ولتاژ بازیابی سریع ( Overshoot ) و نهایتاً گذرای نوسانی بر روی شکل موج اصلی ایجاد می گردد .

پیک دامنه ولتاژ ، به ولتاژ سیستم در لحظه انرژی دار شدن بستگی دارد . در بدترین شرایط ، پیک ولتاژ می‎تواند به دو برابر پیک ولتاژ سیستم برسد . اما معمولاً دامنه به علت وجود بارهای متصل به سیستم و میراسازی در سیستم ( وجود المانهای مقاومتی ) کمتر از این مقدار خواهد بود . در شبکه‎های توزیع معمول ، سطوح اضافه ولتاژ در محدودة 1/1تا 6/1 پریونیت می باشند. معمولاً فرکانسهای گذاری ناشی از کلید زنی خازنی در شبکه توزیع در حدود (hz ) 10000-300 است .

اضافه ولتاژهای گذرا شبکه توزیع را تهدید نمی کنند ، زیرا دامنه های پیک شان پایین تر از سطحی است که تجهیزات حفاظتی ضربه ای از قبیل برقگیر را وادار به عمل نماید . اما این گذراها به دلیل فرکانس نسبتاً پایینی که دارند از ترانسفورماتور کاهنده عبور کرده و بار مشترکین را تحت تأثیر قرار می دهند . اضافه ولتاژهای ثانویه ایجاد شده ، موجب افزایش قابل توجه ولتاژ یا قطع ناخواسته در راه اندازهای تنظیم کننده سرعت می‎شوند .

مشکلات کیفیت توان ناشی از کلیدزنی خازن توزیع شامل خروج و یا خرابی تجهیزات مشترکین ( بخاطر اضافه ولتاژ زیاد ) ، قطع ناخواسته راه اندازهای تنظیم کننده سرعت و یا خاموشی تجهیزات در سایر فرایندها ( ناشی از اضافه ولتاژ ایجاد شده روی باس dc ) ، خروج TVSS و بروز مشکلات در شبکه کامپیوتری می‎باشد .

خطی ( نظیر راه اندازهای تنظیم کننده سرعت ) می باشند .

1.اندازه گیری هارمونیکی : هدف از اندازه گیری ، مشخص کردن رفتار منابع هارمونیکی و فراهم نمودن داده های مقدماتی درباره شدت مسأله اعوجاج است . این داده های اندازه گیری شده ، برای تائید جزئیات مدلهای کامپیوتری و محاسبات دستی ارزش زیادی دارند .

آشکار سازی اولیه مسائل هارمونیکی می‎تواند با استفاده از دستگاههای اندازه گیری جدید که نقطه پیک شکل موجها را نشان می‎دهد یا با استفاده از ابزارهایی که اطلاعاتی در رابطه با نسبت مقدار مؤثر کل به مقدار مؤثر مولفه اصلی ارائه می دهند ، انجام می‎شود .

اغلب ، اندازه گیری ها در شبکه های توزیع بدلیل نیاز به مبدل ، بسیار مشکل تر از اندازه گیری در سمت مصرف کننده ( کارگاه صنعتی ) است . احتمالاً کلاس های موجود CT ها و PT های اندازه گیر ، برای بدست آوردن داده های هارمونیکی استفاده می‎شوند .

2.محاسبات و شبیه سازی : از آنجائیکه روشهای نمایش مولفه های مهم در سیستم قدرت توسعه یافته و دقتشان از طریق مقایسه با داده های اندازه گیری شده مورد تائید قرار گرفته است ، به کمک آنها ، محدوده وسیعی از شرایط ایجاد شده قابل تشخیص گردیده است . از جمله می‎توان ساختار سیستم هایی را که ایجاد رزونانس می کنند ، شناسائی نموده و همچنین ساختارهای مختلف می‎توانند از این نظر مورد آزمون قرار گیرند .

شبیه سازی در حوزه فرکانس ( مشخصه امپدانس بر حسب فرکانس ) قادر است مشخص کند که آیا ساختار سیستم می‎تواند باعث ایجاد مسائل هارمونیکی به دلیل شرایط رزونانسی بشود یا خیر ( شکل (3-4) ) و شبیه سازی اعوجاج هارمونیکی برای ارزیابی تأثیر فیلترهای هارمونیکی یا تکنیک های دیگر در کاهش هارمونیک بکار برده می‎شوند .

3.توسعه راه حل : سطوح ولتاژ هارمونیکی تعیین شده از طریق شبیه سازی و اندازه گیری با حدود توصیه شده مقایسه می‎شوند . اگر سطوح اعوجاج ولتاژ هارمونیکی در محدودة قابل قبول نباشد ، مشخصه پاسخ فرکانس دستگاهها یا سیستم می‎تواند با عوض کردن مقدار خازن یا مکان آن و یا با نصب فیلترهای هارمونیکی تغییر داده شود .

د ـ اثر هارمونیک ها بر ضریب قدرت :

روش سنتی تصحیح ضریب قدرت در سیستم قدرت و در تاسیسات مصرف کنندگان,

استفاده از بانک های خازنی موازی بوده است . این مسأله از آن حقیقت ناشی می‎شود که اغلب بارهای سیستم در فرکانس اصلی ، جریان پس فاز از شبکه می کشند . خازنها ، در فرکانس اصلی ، جریان پیش فاز می کشند و لذا می‎توانند برای جبران سازی جریانهای کشیده شده توسط بارهای القائی بکار روند .

این مشخصات پیش فازی و پس فازی جریان براین فرض استوار است که بارهای روی سیستم ، مشخصه ولتاژ - جریان خطی دارند و اعوجاج هارمونیکی ولتاژ و جریان اهمیت چندانی ندارد . با این فرضیات ، ضریب قدرت با ضریب قدرت جابجایی(DPF) برابر است . محاسبه ضریب قدرت جابجایی با استفاده از مثلث ضریب قدرت انجام می‎شود و با رابطه زیر بصورت خلاصه بیان می‎گردد :

(2-5)

اعوجاج هارمونیکی در جریان و یا ولتاژ که بوسیله بارهای غیر خطی در سیستم ایجاد می‎شود ، روش محاسبه ضریب قدرت را تغییر می‎دهد .

ضریب قدرت صحیح بصورت نسبت توان حقیقی به ولت آمپر کل در مدار ، تعریف می‎شود .

(3-5)

مقدارTPF ، سنجشی است از اینکه توان حقیقی با چه بهره وری واقعی بکار برده

است . از آنجاییکه خازنها تنها در فرکانس نامی تولید توان راکتیو می کنند ، لذا

نمی توانند در حضور هارمونیک TPF را اصلاح کنند . در واقع ، خازنها با ایجاد شرایط رزونانس اعوجاج هارمونیکی ولتاژ و جریان را تقویت کرده و TPF بدتری را بوجود می آورند . به دلیل اینکه جرایم مربوط به ضریب قدرت سالیانه تقریباً بطور کلی برDPF پایه است ،DPF هنوز برای بسیاری از مشترکین صنعتی اهمیت زیادی دارد .

هـ - روشهای حل مسائل هارمونیکی :

اغلب مشکلات مربوط به هارمونیک ها ، ابتدا در بانک های خازنی خودشان را نشان می دهند . مهمترین دلیل این موضوع آن است که خازنها مدارهای تشدید تشکیل

امواج کلید زنی

جریان هجومی

ولتاژ آنی بازگیری جرقه

تخلیه / بازبست ولتاژ



بسته به طراحی ساختاری اساسی ، حدود پایداری در مقابل اضافه ولتاژ ، اضافه جریان و هارمونیکها برای دور کردن خازن از خرابی بسیار مهم است.

اساسا خازن ها امواج کلید زنی تولید می کنند که عموما به عنوان جریان هجومی و اضافه ولتاژ آنی دسته بندی می شوند.

جریان هجومی پدیده ای است که هنگام به مدار وصل کردن خازن ها رخ می دهد. امپدانس ارائه شده توسط خازن طبیعتا بسیار کم و مقاومتی است. این امر منجر به جریان هجومی به بزرگی 50 تا 100 برابر جریان اسمی می شود که از خازن عبور می کند ، اما چرا از خازن؟ زیرا امپدانس ترانسفورماتور در زمان روشن کردن خازن ها فقط در مقابل شار جریان مقاومت می کند.

این امر هنگامی پیچیده تر می گردد که در ترکیب موازی بانک خازنی ممکن است جریان هجومی کلید زنی به سطحی بالاتر از 200 تا 300 برابر جریان اسمی برسد. این جریان هجومی نتیجه تخلیه خازن های از پیش شارژ شده موازی با آن می باشد. در زیر این مطلب نشان داده شده است.نوعا جریان هجومی علاوه بر تخریب در شکل موج جریان سبب تخریب در شکل موج ولتاژ می شود.





در هنگام خاموش کردن (از مدار خارج کردن) خازن ها ، بسته به شارژ ذخیره شده در آن ، اضافه ولتاژ ناگهانی بالاتری در زمان خاموش کردن خازن ها بوجود خواهد آمد که ممکن است موجب پدید آمدن جرقه در پایه ها شود.

هنگامی که خازن خاموش می شود شار الکتریکی در خود نگه می دارد و بوسیله مقاومتهای تخلیه ، تخلیه (Discharge) می شود. مدت زمان تخلیه عموما بین 30 تا 60 ثانیه می باشد. تا زمانی که تخلیه بشکل موثری صورت نگرفته نمی توان خازنها را به مدار باز گرداند. هرگونه بازبست خازن قبل از تخلیه کامل دوباره موجب افزایش جریان هجومی می شود.

علاوه بر دستگاه های مسدود کننده هارمونیک ها که با صحت خازن ها نسبت مستقیم دارند ، و در سر خط بعدی تشریح می شوند ، دستگاه های تحلیل برنده امواج کلید زنی مثل جریان هجومی ، اضافه ولتاژ آنی و غیره نیاز دارند که بطور دقیق تعریف و بررسی شوند.

دستگاه های مسدود کننده هارمونیک ها:

برای کاربری سالم خازن ها لازم است که فرکانس تشدید مدار LC (سلف – خازن) که شامل ادوکتانس بار و خازنهای اصلاح ضریب توان می شود ، به فرکانسی دور از کمترین فرکانس هارمونیک تغییر داده شود. برای مثال هارمونیک هایی که در سامانه تولید می شوند و خازن های قدرت را متاثر می سازند ، هارمونیک های پنجم ، هفتم ، یازدهم ، سیزدهم و غیره هستند. پایین ترین هارمونیکی که بر خازن ها تاثیر می گذارد هارمونیک پنجم است که در فرکانس 250 هرتز دیده می شود. اساسا اگر خازن ها با سلف ها موازی شده باشند ، انتخاب مقدار اندوکتانس به شکل زیر است :

ترکیب سری LC (سلف – خازن) در فرکانسی زیر 250هرتز تشدید می کند . بنابراین در همه فرکانس های هارمونیک ها ترکیب سری سلف و خازن مانند یک ترکیب سلفی عمل خواهد کرد و امکان تشدید برای هارمونیک پنجم یا هر هارمونیک بالاتری از بین می رود. شکل زیر نامیزان سازی (De – Tuning) خازن ها را نشان می دهد.