فایل بای | FileBuy

مرجع خرید و دانلود گزارش کار آموزی ، گزارشکار آزمایشگاه ، مقاله ، تحقیق ، پروژه و پایان نامه های کلیه رشته های دانشگاهی

فایل بای | FileBuy

مرجع خرید و دانلود گزارش کار آموزی ، گزارشکار آزمایشگاه ، مقاله ، تحقیق ، پروژه و پایان نامه های کلیه رشته های دانشگاهی

برسی معرفی انواع کمک فنرها و لرزه گیرها

لرزش‌های پی‌درپی بدنه خودرو سبب خستگی راننده و سرنشینان می‌شود در پی آن کارایی و بازدهی رانندگی و عمر مفید خودرو کاهش یافته و سلامتی انسان به خطر می‌افتد بنابراین مدل‌سازی مود سواری خودرو و به سازی پاسخ لرزشی آن با بهره‌ از میراینده‌های ارتعاشی از دیدگاه‌های مهم در طراحی خودرو بوده، که آسایش سرنشین، افزایش دوام خودرو، ایمنی و افزایش کنترل خودرو را
دسته بندی مکانیک
فرمت فایل doc
حجم فایل 5117 کیلو بایت
تعداد صفحات فایل 78
برسی معرفی انواع کمک فنرها و لرزه گیرها

فروشنده فایل

کد کاربری 8044

فصل اول:

معرفی انواع کمک فنرها

و لرزه گیرها


سیستم تعلیق

لرزش‌های پی‌درپی بدنه خودرو سبب خستگی راننده و سرنشینان می‌شود. در پی آن کارایی و بازدهی رانندگی و عمر مفید خودرو کاهش یافته و سلامتی انسان به خطر می‌افتد. بنابراین مدل‌سازی مود سواری خودرو و به سازی پاسخ لرزشی آن با بهره‌ از میراینده‌های ارتعاشی از دیدگاه‌های مهم در طراحی خودرو بوده، که آسایش سرنشین، افزایش دوام خودرو، ایمنی و افزایش کنترل خودرو را به دنبال دارد.

خاصیت میرایش ارتعاشات و لرزش‌ها و رفع بعضی از اغتشاشات حرکت در خودرو و حفظ بعضی ویژگی‌های مناسب جهت ایمنی،‌ از ویژگی‌های مناسب مکانیکی است که انجام آن با یک وسیله مکانیکی امکان‌پذیر است . مجموعه مشخصی که فراهم‌گر هدف بالا است، سیستم تعلیق نام دارد. این مجموعه قلمرو وسیعی را با خواص و وظایف متفاوت در بر دارد.

نقش سیستم تعلیق در خودرو مهار چرخ در فضا (در سه راستای Z , Y , X) و فراهم کردن حرکات خطی و زاویه‌ای مناسب آن است . نیز چرخ‌ها را به صورت تکیه‌گاهی امن در زیر خودرو نگاه می‌دارد به گونه‌ای که چرخ‌ها توان مهارسازی نیروهای اعمالی به خودرو (گرانش، گریز از مرکز، نیروهای رانشی و ترمزی و ...) را داشته باشند. ویژگی‌های سختی و میرایی تعلیق بایستی چنان برگزیده شوند که پایداری و آسایش خودرو تامین گردد.

برای پی بردن به جایگاه سیستم تعلیق، خودرو را در سه حالت زیر در نظر می‌گیریم :

بی‌تعلیق : بدون سیستم تعلیق، تایر و بدنه معلق می‌باشند. در نتیجه هر ناهمواری در سطح جاده ، به سرنشینان خودرو منتقل خواهد شد.

با تعلیق و بی‌لرزه‌گیر : در این حالت تایر به زمین چسبیده ولی بدنه معلق می‌باشد. در نتیجه بدنه خودرو به طور مداوم به بالا و پایین نوسان می‌کند.

با تعلیق و لرزه‌گیر : در این حالت تایر و بدنه به زمین چسبیده است و لرزه‌گیر، نوسانات فنر را دفع می‌نماید چرخ‌‌ها به راحتی به بالا و پایین حرکت کرده و پایداری، اطمینان و راحتی خودرو را در پی خواهد داشت.

شکل 1 ـ مقایسه خودرو بدون تعلیق، با تعلیق بدون لرزه‌گیر و با تعلیق کامل

زیر بخش‌های عمده سیستم تعلیق شامل تایر،‌ فنر و لرزه‌گیر می‌باشد که وظیفه آنها برقراری تماس بین چرخ و زمین، ایمنی و راحتی سرنشینان می‌باشد. نیز برای کاهش و در صورت امکان حذف سر و صدا و ارتعاشات، موادی چون لاستیک، چرم، اسفنج،‌ فنرهای متفاوت (مارپیچی، شمشی و میله‌های پیچشی) و ضربه‌گیرهای مختلف (اصطکاکی، هیدرولیکی و گازی) به کار می‌رود.

زیربخش‌های سیستم تعلیق

فنر

فنر عنصری انرژی دهنده و گیرنده می‌باشد که بر اثر تغییر شکل کشسان انرژی پتانسیل آن تغییر می‌کند. در یک سیستم مکانیکی سختی نمایانگر ویژگی‌های فنریت آن است.

در تعیین ویژگی‌های فنریت سیستم‌های مکانیکی باید انعطاف‌پذیری قطعات را نیز لحاظ کرد. محاسبه سختی مؤثر یک مجموعه به سادگی و با بهره از قانون برآیند فنرها امکان‌پذیر است. اگر دو عضو به صورت سری قرار گرفته باشند، آنگاه فنر معادل به قرار زیر است :

(1-1)

اگر دو عضو به صورت موازی قرار گرفته باشند، آنگاه فنر معادل به قرار زیر است:

(1-2)

شکل 2 ـ روش‌های مختلف سرهم‌بندی فنر : روش موازی، روش سری و روش پیچشی

ویژگی‌های مکانیکی فنر

فنرها بر پایه رفتار و ویژگی‌های نیرویی به دو دسته خطی و ناخطی تقسیم می‌شوند. در بیشتر فنرها، نیروهای فنر تابعی از تغییر شکل آن به قرار زیر است :

(1-3)

از آنجا که چرخش این میدان صفر است، بنابراین یک میدان نیروی پایستار است. تابع پتانسیل (انرژی پتانسیل) این میدان پایستار به قرار زیر است :

(1-4)

(1-5)

دسته‌بندی فنرها

فنرها گونه‌های مختلفی دارند، که انواع پرکاربرد آن در صنعت به قرار زیر است :

فنر مارپیچ

فنر مارپیچ مفتولی فولادی است که به صورت حلقه‌ای پیچانده شده است (شکل ). فنر مارپیچ برای مقاومت در برابر بارهای کششی، فشاری یا پیچشی ساخته می‌شود. سختی یک فنر مارپیچ به قرار زیر است :

(1-6)

d : قطر مفتول فنر

N : تعداد حلقه‌های فنر

R : شعاع میانگین فنر

G : مدول برشی

شکل 3 ـ ساختار فنر مارپیچ

شکل 4 ـ گونه‌های مختلف انتهای فنر مارپیچ

فنر مارپیچ نرم‌تر از فنر تخت است، یعنی دارای سختی کمتری می‌باشد. این گونه فنرها کاربرد فراوانی در سیستم‌های تعلیق خودرو دارا می‌باشند. فنرهای مارپیچ به کار رفته در سیستم تعلیق بیشتر به صورت عمودی نصب می‌شوند و بنابراین به فضایی مناسب نیاز دارند. اصطکاک در این گونه فنرها ناچیز و تنها در محل تماس فنر با بدنه مطرح است. تنش اصلی ایجاد شده در این گونه فنرها تنش برشی است، اگر چه کمی‌هم در اثر خمش دچار تنش می‌گردند.

فنرهای مارپیچ بهترین خاصیت را برای جذب انرژی ناشی از حرکات ارتعاشی خودرو دارا می‌باشند و از این نظر بهترین کارایی را دارند. فنرهای مارپیچ اجازه انحرافهای بزرگتری را نسبت به فنرهای تخت می‌دهند و بنابراین آسایش و نرمی‌بیشتری را نسبت به فنرهای تخت برای سرنشین خودرو فراهم می‌آورند. امروزه در سیستم تعلیق جلو و پشت سواری‌ها فنر مارپیچ بکار می‌رود و دیگر از فنرهای تخت استفاده نمی‌شود.

شکل 5 ـ گونه‌های مختلف اتصال و قرارگیری فنر مارپیچ

فنرهای پیچشی

در فنرهای پیچشی تغییر شکل زاویه‌ای سبب ایجاد گشتاور پیچشی است. رابطه نیرو و جابجایی در فنرهای پیچشی به قرار زیر است :

(1-7)

میله پیچشی

میله پیچشی محوری فولادی است که در برابر گشتاور پیچشی قرار گرفته و تغییر شکل آن زاویه‌ای است.

شکل 6 ـ نمای هندسی فنر پیچشی

میله پیچشی بیشتر در سیستم‌های تعلیق جداگانه به کار می‌روند، که از یک سو به شاسی متصل بوده و از سوی دیگر توسط یک بازو به چرخ متصل می‌شود و این بازو رابطی است میان لرزش‌های خطی چرخ و لرزش‌های زاویه‌ای میله پیچشی . سختی این گونه فنرها از دو بخش زیر شکل یافته است :

سختی پیچشی میله Kφ

سختی خمشی بازو Kb

این دو بخش به صورت سری قرار گرفته‌اند و بنابراین سختی کل به قرار زیر است :

(1-8)

میله پایدارنده

یکی از زیربخش‌های مهم سیستم تعلیق میله‌های پایدارنده است، که برای افزایش پایداری به کار می‌رود. نمونه‌ای از میله‌های پایدارنده، میله‌ای است که میل موج گیر (میله پادغلت) نامیده می‌شود. میل موج گیر میله‌ای فلزی است که به دو بازوی کنترلی چرخ‌های درونی و بیرونی متصل می‌شود. هنگام افت و خیز یکی از چرخ‌ها، میل موج‌گیر حرکت را به چرخ دیگر انتقال می‌دهد. میل موج گیر یک تراز بالا در هنگام رانندگی ایجاد می‌کند و سبب کاهش حرکات لرزشی در هنگام چرخش خودرو است . با توجه به پارامترهای طراحی میل موج‌گیر می‌توان تا 15 درصد در برابر حرکت غلتشی خودرو در هنگام چرخش ایستادگی کرد. میله پادغلت در واقع نوعی فنر پیچشی است با این تفاوت که در سیستم‌های یکپارچه نصب شده و تنها در برابر غلتش نسبی محور و شاسی واکنش نشان می‌دهد.

کاربرد میله‌های پادغلت در سیستم تعلیق

هنگامی‌که بدنه می‌غلتد و یا یکی از چرخ‌ها روی دست‌انداز یا درون چاله قرار می‌گیرد، میله پادغلت سبب افزایش سختی فنریت تعلیق است، یعنی فنریت آن را کاهش می‌دهد. هنگامی‌که خودرو در راستای مستقیم حرکت می‌کند، میله پادغلت، سبب نرمی‌فنریت تعلیق شده و بنابراین خوش سواری خودرو را بهبود می‌بخشد.

میله پادغلت یک میله پیچشی می‌باشد که به چند بخش تقسیم شده است و به صورت کناری و با یاتاقان و بوش‌های لاستیکی به بدنه لولا می‌شود و همینطور از دو طرف به بازوهای لنگیده متصل شده است.

کارکرد میله پادغلت

اگر افت و خیز چرخ‌ها برابر باشد، آنگاه بازوهای لنگیده همسو بوده و بنابراین میله پادغلت نقشی در سختی غلتشی محور نخواهد داشت.

اگر افت و خیز چرخ‌ها برابر نباشد ، به طور نمونه چرخ راست روی برآمدگی قرار گرفته و بالا رود، در این حالت بازوی کنترل سمت راست بالا رفته و سبب گردش بازوی لنگیده چسبیده به آن سوی راست می‌شود. اما بازوی لنگیده سمت چپ تغییر نکرده و بنابراین تفاوت زاویه گردش بازوهای لنگیده سبب ایجاد گشتاور در میله پادغلت می‌شود و بنابراین نیرویی رو به بالا در سمت چپ بدنه ازطریق یاتاق‌های بوش های لاستیکی اعمال می‌شود و بنابراین سمت چپ بدنه به بالا می‌رود. بنابراین سمت راست چرخ‌ها بالا رفته و بنابراین بدنه بالا می‌رود و در سمت چپ کشش میله پادغلت سبب بالا رفتن بدنه می‌شود. بنابراین بدنه بدون غلتش در موقعیت بالاتری قرار می‌گیرد. بنابراین وظیفه میله پادغلت جلوگیری از غلتش و کجی بدنه با تغییر ارتفاع آن است.

فنر تخت

فنر تحت در هر دو سیستم تعلیق جلو و پشت به کار می‌رود. این فنرها به صورت کناری نیز به کار می‌روند و با این طرح وسط فنر به اسکلت متصل شده و هر یک از دو انتهای آن یک چرخ را نگهداری می‌کند. طرز عمل این فنرها مانند تمام فنرهای تخت است موقعی که چرخ با یک برآمدگی برخورد می‌کند فنر به بالا خم می‌شود ضربه را مستهلک می‌نماید و برعکس هنگامی‌که چرخ در یک گودی می‌افتد به طرف پایین خم می‌شود بدین ترتیب فنر تخت در وسایل نقلیه مانند فنر مارپیچی عمل می‌کند فنرها معمولا به طور مکانیکی با وسائلی از قبیل بالشتک و بوش لاستیکی از بدنه عایق‌بندی شده‌اند این عمل از انتقال لرزشها به اسکلت و بدنه جلوگیری می‌کند.

در حالت معمول این فنرها بصورت چند لایه می‌باشند که بزرگترین فنر را شاه‌فنر می‌گویند و لایه‌های دیگر فنر نسبت به شاه فنر کوچکتر می‌باشند و به کمک میله‌ای در وسط به یکدیگر متصل شده‌اند و به وسیله گیره‌های مخصوصی از لغزیدن آنها در جهات مختلف جلوگیری می‌شود. در فنرهای شمشی شاه فنر به کمک میله یا بوش در یک طرف به قاب وصل می‌شود و از طرف دیگر به کمک میله U شکل که گوشواره نامیده می‌شود به رام خودرو متصل می‌گردد. این گوشواره تغییر طول فنر را در اثر نوسان آن فراهم می‌سازد. همچنین بوش به کار رفته در این فنرها برنجی می‌باشد که به کمک گریس از سایش آن جلوگیری می‌شود. البته در خودروهای سبک از لاستیک هم استفاده می‌شود.

شکل 7 ـ ساختار فنر تخت

لایه‌های دیگر فنر تخت نسبت به شاه‌فنر انحنای بیشتری دارند و برای بستن آنها پیش‌بار (فشار اولیه) به کار می‌رود. این فشار اولیه سبب میرایش ضربات و لرزش‌های فنر می‌گردد. این ویژگی یکی از برتری‌های فنر تخت است.

شکل 8 ـ روشهای گوناگون اتصال فنر تخت

برای سهولت نگهداری فنرها آنها را در تکیه گاههای لاستیکی مفصل می‌کنند. این مفصل‌ها معمولا از دو بوش تشکیل شده‌اند که میان آنها لاستیک ریخته شده است. لاستیک به بوش درونی توان گردش و خاصیت لرزه گیری را می‌دهد. برای سادگی لغزش لایه‌های فنر روی یکدیگر و نیز افزایش ویژگی‌ لرزه‌گیری آنها میان لایه‌ها قشری از روغن گرانیتی قرار می‌دهند، نیز این غشا از زنگ زدگی فنر جلوگیری می‌نماید. می‌توان بجای روغن از ورقه‌های مخصوص پلاستیکی استفاده کرد. برای جلوگیری از نفوذ رطوبت و گرد و غبار به فنر،‌آن را در پوششی از لاستیک قرار می‌دهند. شکل زیر یک فنر تخت و قطعات متصل به آن را نشان می‌دهد.

شکل 9 ـ شعاع مؤثر فنر تخت

فنرهای تخت به صورت طولی در قسمت جلو توسط پیش و بوش و برنجی و لاستیکی به شاسی متصل می‌شود و در اتصال ناحیه عقب از یک محور گردان (گوشواره‌ فنری) استفاده می‌گردد. با قرار دادن شیکل در سیستم تعلیق پشت می‌توان کم فرمانی خودرو را افزایش داد.

شکل 10 ـ ابعاد فنر تخت

دلایل کاربرد اتصال گوشواره‌ای به قرار زیر است :

فنر آزادی حرکت در تمام جهات را داشته باشد.

لاستیک گوشواره موجب جذب ارتعاشات و جلوگیری از منتقل شدن آن به بدنه می‌شود.

در بعضی از طراحی‌ها در اتصال ناحیه پشت برای فنر تخت بجای گوشواره از یک بلوک شیاردار استفاده می‌شود که خود بلوک به بدنه ثابت شده و فنر تخت در داخل شیار حرکت می‌کند در نتیجه طول مؤثر فنر تغییر می‌کند.

کاستی‌های فنر تخت به قرار زیر است :

اصطکاک خشک میان لایه‌های آن که سبب کاهش خوش‌سواری است.

کاهش پایداری کناری به ویژه هنگامی‌که طول فنر را برای افزایش نرمی‌فنریت آنها افزوده‌اند.

شکل 11 ـ تغییر شکل فنر تخت (Wind Up) در برابر گشتاور محور

چند لایه سازی فنر تخت

در طراحی فنر تخت چون هدف تحمل تنش برشی بیشتر می‌باشد پس ممکن است مطرح شود که جنس تیغه‌ها را نرم بگیریم تا تحمل تنش برشی بیشتری را داشته باشد. ولی می‌دانیم وقتی جنس فنر نرم باشد تحمل بار را ندارد و زیر بار خم می‌شود. پس بایستی جنس فنر سخت باشد در نتیجه برای افزایش تحمل تنش برشی، بایستی قطعات فنر را به صورت لایه لایه تهیه کرد. هر چه تعداد تیغه‌ها بیشتر باشد تحمل تنش برشی بیشتری را دارد. در شکل زیر این مطلب به طور وضوح نشان داده شده است.

شکل 12 ـ تاثیر چندلایه سازی فنر تخت برشکست آن

البته علت دیگر چندلایه سازی این است که تنش در میان تیر بیشینه بوده و در دو سر تیر کمترین مقدار خود را دارا است، که رابطه زیر این مطلب را می‌نمایاند :

(1-9)

پس برای برطرف نمودن این نقیصه و همچنین برای اینکه بتوانیم تنش تقریباً یکنواختی در طول تیر داشته باشیم تیر را با سطح مقطع نایکنواخت می‌سازند.

شکل 13 ـ نمودار گشتاور و تنش خمشی در فنر تخت ساده و فنر تخت لوزی گون

اصطکاک خشک

موضوع مهمی‌که در ارتباط با فنرهای تسمه‌ای مطرح می‌شود اصطکاک بین لایه‌ای است. در اثر اعمال بار و تغییر شکل فنر، لایه‌های آن بر روی یکدیگر می‌لغزند و این لغزش تولید اصطکاک می‌کند. راستای نیروی اصطکاک بر خلاف جهت حرکت آن است و مقدار نیروی اصطکاک متناسب با نیروی فنر است. به همین جهت برخلاف اصطکاک ثابت کولمبی که در آن نیروی اصطکاک همیشه ثابت می‌ماند در اینگونه فنرها نیروی اصطکاک از صفر تا یک مقدار ماکزیمم در نوسان است.

فنرهای پیچشی و مارپیچ تقریباً فاقد اصطکاک می‌باشند و به همین دلیل مزیت عمده‌ای نسبت به فنرهای تسمه‌ای دارند، در نتیجه تمایل به استفاده از فنرهای پیچشی و مارپیچ افزایش یافته است.

دلیل دیگری که استفاده از فنر پیچشی و مارپیچ را افزون کرده، وزن بیشتر فنرهای تسمه‌ای می‌باشد.

دسته‌بندی فنرهای تخت

فنرهای تخت که به بازار عرضه می‌شوند دو نوع می‌باشد :

ذوزنقه‌ای

در اینگونه فنر پهنای لایه‌ها در تمام طول آن یکسان است، که از نظر ساخت ارزان بوده ولی مواد بیشتری مصرف می‌شود.

شکل 14 ـ فنر تخت ذوزنقه‌ای

سهمی

در اینگونه فنر پهنای لایه‌ها در وسط بیشتر از دو طرف هر لایه است، که از نظر ساخت گران بوده ولی مواد کمتری مصرف می‌شود. بنابراین وزن کمتری دارد و جای کمتری را اشغال می‌کند. این گونه فنرها به شکلهای مختلفی در خودرو استفاده می‌شوند که در شکل 14 نشان داده شده است.

دو لایه مرحله‌ای

در بسیاری از خودروهای سنگین که وزن آنها در حالت بدون بار و با وجود بار تفاوت زیادی دارد، از فنر تخت دو لایه مرحله‌ای (دو ردیفه) استفاده می‌شود. در این فنرها فنرهای پایین به فنر اصلی و فنرهای بالایی به فنرهای کمکی معروفند.

این فنر کمکی تنها هنگامی‌وارد عمل می‌شود که بار سنگینی روی وسیله نقلیه قرار گرفته و یا اینکه چرخ با دست انداز بزرگی در جاده برخورد نماید. هنگامی‌که فنر اصلی تا آخرین حد خود بسته شود، فنر کمکی را به سمت بالا حرکت داده و دو انتهای فنر کمکی به دو زائده تکیه گاه که روی شاسی قرار گرفته است، برخورد می‌کند. در این حالت فنر کمکی نیز خم شده و سختی آن به سختی فنر اصلی افزوده می‌گردد. (شکل 15)

شکل 15 ـ گونه‌های فنر تخت سهموی

شکل 16 ـ فنر تخت دو مرحله‌ای

فنر لاستیکی

فنرهای لاستیکی کاربردهای فراوانی در خودرو دارند. لاستیک جسمی‌سخت شونده است، ینی با افزایش تنش درونی آن، ایستادگی آن در برابر تغییر شکل افزایش می‌یابد. لاستیک در برابر برانگیختگی های پربسامد کم دامنه، جاذب انرژی خوبی است و بنابراین به عنوان جداساز لرزه کاربردهای فراوانی دارد.

پیش بینی ضریب سختی فنرهای لاستیکی برخلاف فنرهای مارپیچی به سادگی امکان‌پذیر نمی‌باشد زیرا :

به ساختار شیمیایی آن وابسته است.

وابسته به زمان و نرخ بارگذاری است (میرایی) .

تابعی ناخطی از بارگذاری است (سخت شوندگی) .

شکل 17 ـ ساختار و چارچوب مختصات اصلی فنر لاستیکی

جنس فنرها

فنرها معمولا از فولاد آلیاژی مخصوص فنر که تمایل سخت کردن است ساخته می‌شود مقدار کربن این فولاد حدود 5/0 درصد است برای فنرهایی که تحت تاثیر بار متوسط واقع می‌شوند این فولاد با منگنز آلیاژ می‌شود و دارای تنش برشی حدود 120 کیلوگرم بر مجذور میلی متر می‌باشد برای بارهای زیاد فولاد، فولاد آلیاژ شده با کرم وانادیوم به کار می‌رود و بدین ترتیب خاصیت ارتجاعی بیشتری به فولاد داده می‌شود. تنش برشی در این نوع فنرها حدود 135 کیلوگرم بر مجذور میلی متر است. فولادهای فنر معمولا در روغن آب داده می‌شوند.


بررسی عملکرد و کاربرد روانکارها در صنعت

واژه تریبولوژی از ریشه کلمه یونانی (تریبو) به معنی سایش و (لوژی) به معنی دانش است کاربرد اولیه این علم در یونان باستان، شناخت عوامل حمل سنگهای بزرگ بر روی سطح زمین و بهبود آنها بوده است امروزه این علم شامل مطالعه در مورد نیروی اصطکاک، فرسایش و استفاده از روانکارهای جدید برای کاهش این دو اثر است
دسته بندی روانشناسی و علوم تربیتی
فرمت فایل doc
حجم فایل 155 کیلو بایت
تعداد صفحات فایل 95
بررسی عملکرد و کاربرد روانکارها در صنعت

فروشنده فایل

کد کاربری 8044

عملکرد و کاربرد روانکارها در صنعت

فصل اول :

روان کاری و هدف از آن


تریبولوژی:

واژه تریبولوژی از ریشه کلمه یونانی (تریبو) به معنی سایش و (لوژی) به معنی دانش است. کاربرد اولیه این علم در یونان باستان، شناخت عوامل حمل سنگهای بزرگ بر روی سطح زمین و بهبود آنها بوده است. امروزه این علم شامل مطالعه در مورد نیروی اصطکاک، فرسایش و استفاده از روانکارهای جدید برای کاهش این دو اثر است.
در قرن گذشته تحقیقات گسترده ای برای بدست آوردن روانکارهای بادوام انجام شده که در نهایت منجر به استفاده از مواد افزودنی به روغنها به منظور ارتقای کیفیت آنها شده است. هدف نهایی تحقیقات در این زمینه به دست آوردن روانکارهایی است که هیچگاه نیاز به تعویض و یا ترمیم نداشته باشند. حاصل این تلاش شناسایی روانکارهایی متشکل از ذرات بسیار مواد آلی غیر اورگانیکی است. تحقیقات در این زمینه نشان می دهد اگر اندازه این مواد از100 نانومتر کمتر شود، ساختار بسیار متفاوتی را پیدا خواهند کرد. محصول بدست آمده نانولوبها (Nanolubricants) نامیده می شوند. ذرات کروی یا نانوتیوبها که ساختار اصلی نانولوبها را تشکیل می دهند، در زمان فعالیت،‌مانند میلیونها ساچمه مینیاتوری بین سطوح متحرک لغزیده و منجر به کاهش نیروی اصطکاک، دما و ارتقای کارایی ماشین آلات می شوند. این ذرات می توانند به کوچکترین منافذ قطعات نفوذ کرده و عمل روانکاری را بهبود بخشند. کاربرد این نوع از روانکارها در سطوح ناصاف به مراتب بهتر از روانکارهای فعلی است به همین دلیل تولید کنندگان با استفاده از آنها نیاز کمتری به ماشین کاری، صرف وقت و هزینه برای ساخت قطعات ماشین آلات خواهند داشت که این عامل، منجر به صرفه جویی در مواد و هزینه می شود. نانو روانکارها که در دو گروه جامد و مایع به بازار عرضه خواهند شد باعث کاهش نیروی اصطکاک و در نتیجه نیروی مصرفی و سوخت ماشین آلات می شوند. همچنین این مواد به عنوان مواد افزودنی برای روانکارها یا بصورت ترکیب با مواد دیگر و یا به تنهایی می توانند مورد استفاده قرار گیرند.

تطابق بهتر با محیط زیست در مقایسه با روانکارهای متداول امروزی یکی دیگر از مزایایی بسیار خوب نانو روانکارهاست. آزمایش های متعددی که توسط آزمایشگاههای مختلف فارماکولوژی در آمریکا و اروپا انجام شده سازگار بودن این گروه از روانکار را با محیط زیست تایید کرده است.

این مواد به هیچ عنوان سمی نیستند و موجب آلودگیِ آب، خاک وهوا نخواهند شد.
نانوتریبولوژی در فناوری های پیشرفته جدید مانند هموار ساختن سطوح دیسک های حافظه کامپیوتر برای افزایش کیفیت ذخیره اطلاعات و کاهش نیروی اصطکاک و انرژی مصرفی و جلوگیری از خوردگی قطعات نقش مهمی ایفا می کند. در صنایع سنتی مانند اتومبیل و هواپیما، هدف از جایگزین کردن نانو روانکارها بجای انواع مختلف روانکارهای در حال مصرف مانند روغن و یا گریس، بی نیازی به تعویض روغن، چسبندگی بهتر به قطعات به صورت فیلم های تک لایه ای، تحمل فشار مکانیکی بسیار زیاد و دمای کارکرد بیشتر است. حتی از آنها می توان در سطوح بیرونی کشتی و یا هواپیما برای کم کردن نیروی اصطکاک ایجاد شده توسط آب و یا هوا استفاده کرد.

در حال حاضر شرکت های متعددی مشغول تحقیقات در مورد نسل جدید روانکارها هستند. یک گروه محقق توانسته است محصول جدیدی با ساختار چندین شبکه از لایه های فیلم بر روی هم که دارای حفره های خالی (برای انعطاف پذیری بیشتر) است را بسازد. عملکرد محصول جدیدبه صورت حرکت قطعات بر روی تعداد بیشماری از لایه های ساخته شده از نانو بلبرینگ های سخت است. این شرکت محصول جدید خود را بنام نانو لوب، Nanolub نامیده است. مدیر این سازمان معتقد است که این روانکار می تواند جایگزین انواع روانکارهای متداول امروزی با6 تا10 برابر بازدهی بهترباشد. ساختار این بلبرینگها از دی سولفید تنگستن،‌ WS2 است. در این ساختار لایه های لغزنده بر روی یکدیگر باعث کم شدن اصطکاک و منافذ خالی باعث انعطاف پذیری بیشتر روانکار می شوند. با استفاده از این مواد، روانکار می تواند فشار و ضربات مکانیکی بسیار شدیدی را تحمل کرده و به صورت ذرات کروی سخت در سطوح ناصاف دندانه دار میان قطعات متحرک حرکت کند. علاوه بر آن، این مواد برخلاف روانکارهای معمولی می توانند در داخل خلل و فرج سطوح ناصاف نفوذ کرده و یک لایه نرم در حد یک مولکول را به وجود آورند. برخی از شرکت های تولیدی برای ساخت نانو روانکارها از ساختار نانو تیوب های کربنی استفاده کرده اند ولی مشخص شده که در طول زمان و با وجود نیروی اصطکاک، مواد بکار برد شده متلاشی و تجزیه می شوند. هم اکنون تحقیق در مورد بهینه سازی این مواد ادامه دارد. یکی از سازمان های تحقیقاتی بنام (NIST) در حال بررسی روش اختلاط مولکولهای مختلف به صورت یک فیلم تک لایه ای است. این تحقیق از روش ادغام مولکولها (حداکثر تا4 عدد)، که هر یک خاصیت ویژه ای مانند مقاومت در برابر سایش و خود ترمیمی دارند،‌ استفاده کرده است که در مجموع، یک نانو روانکار دارای قابلیت های یکایک ساختارهای ملکولها خواهد شد. برای مثال در یک ترکیب ملکولی چهارتایی، گروه اول مولکولها دارای خاصیت چسبندگی بسیارعالی به سطوح، گروه دوم بوجود آورنده یک فیلم روانکار بسیار مقاوم، گروه سوم محافظ در مقابل ضربات سخت و گروه چهارم حرکت در کلیه سطوح برای از بین بردن نیروی اصطکاک است.

امروزه دستگاههای بسیاری برای اندازه گیری نیروی اصطکاک، کیفیت روانکارها و میزان سایش قطعات به صورت سنتی وجود دارد. این دستگاهها که تریبومیتر نام دارند، دارای روشهای مختلفی در عملکرد خود هستند مانند حرکت یک میله،‌یک کره و یا یک صفحه برروی صفحه دیگر و نظایر آن. اندازه گیری پارامترهای فیزیکی و شیمیایی روانکارها در مقیاس نانو دارای پیچیدگی بسیار زیاد بوده و بسهولت انجام نمی گیرد. برای این منظور استفاده از وسایل جدیدی مانند میکروسکپهای نیروی اتمی، (Atomic force microscope) که به اختصار AFM نام دارند،‌ضروریست. این وسیله می تواند در مقیاس و ابعاد نانو، عملکردهای متفاوتی شامل مشاهده سه بعدی خوردگی، ترک خوردگی یک سطح، اندازه گیری قطر ذرات جامد و یا مایع روانکارها، سنجش ضخامت فیلم روانکارها در حد تک لایه، محاسبه نیروی اصطکاک، بدست آوردن اشکال سطوح و ناهمواری آنها، اندازه گیری سختی سطوح و قابلیت ارتجاع و تغییر در ابعاد نانو را داشته باشد. مزایای دیگر این دستگاه عبارتست از: قابلیت کاربرد آن برای کلیه مواد، شامل: سرامیک ها، فلزات، پولیمرها- نیمه هادی ها و مغناطیسها،‌ نور، موارد بصری و عناصر بیولوژیکی در اتمسفر و خلاء.

شرکت (ApNano Material ) ، تولید کننده انواع محصولات نانو و اولین سازنده نانولوبها (یک نوع روغن سنتتیک غیرآلی) است. نانولوبهای ساخته شده کنونی که در حال حاضر در مقیاس آزمایشگاهی تولید می شوند، غیرسمی و سازگار با محیط زیست هستند که کیفیت و عملکرد بسیار خوب آنها توسط کارخانه های اتومبیل سازی جهان به تایید رسیده است. همچنین این مواد می توانند بجای ادتیوها برای بهبود کیفیت روغن های موتور، دنده و هیدرولیک استفاده شوند. مهمترین مزیت این محصولات کاهش مصرف سوخت و گازهای زیان آور موتور است. استفاده از نانولوبها در آزمایشگاههای تحقیقاتی علوم پزشکی نیز بسیار مورد توجه قرار گرفته است. به تازگی شرکت اتومبیل سازی فولکس واگن برای ساخت روانکارهایی با کیفیت بالا که در صنایع هوایی و صنایع برودتی کاربرد دارند، توانسته است با شرکت ApNano Material و یک شرکت دیگر
آمریکایی با نام Hatco Corporation یک قرارداد مشارکتی منعقد کند.
تولید انبوه تا سه سال آینده با درآمد سالیانه بیش از100 میلیون دلار شروع خواهد شد. درآمد حاصل از فروش ادتیوها سالانه در حدود یک میلیارد دلار برای تمامی تولیدکنندگان بوده و با استفاده از مواد نانو می توانند آن را به37 میلیارد دلار افزایش دهند.
با توجه به موارد اشاره شده، ساخت نانو روانکارها نیازمند هماهنگی بسیاری از صنایع تولید کننده، ‌سازندگان مواد افزودنی و مصرف کنندگان است. شرکت هایی که بخواهند این نوع روانکار را تولید کنند با مشکل عمده ای روبرو هستند و آن صرفه اقتصادی در سرمایه گذاری اولیه است. اگر این روانکارها در ماشین آلات ریخته شوند دیگر تعویض نشده و خرید آنها فقط یکبار بیشتر نیست و پس از اشباع بازار دیگر خریداری برایش وجود نخواهد داشت. این نوع روانکارها برای مصرف کنندگان بسیار ایده ال است ولی آیا برای تولید کنندگان روانکار نیز همین گونه است؟

توقع دیدن این محصولات را به این زودی در مغازه ها نداشته باشید زیرا برای ساخت750 گرم آن در یک واحد بزرگ تولیدی، یک روز کامل فرایند مورد نیاز است.

روانکاری

عوامل زیر را در هنگام برنامه ریزی روانکاری تجهیزات لحاظ کنید : - تعداد و محلهای

عوامل زیر را در هنگام برنامه ریزی روانکاری تجهیزات لحاظ کنید : - تعداد و محلهای روانکاری هر دستگاه.

- دوره تناوب روانکاری.

- نحوه و روش روانکاری ( استفاده از پمپ، گریس پمپ، قیف ، برس موئی و( ...

- حجم و میزان روانکار.

- نوع روانکار.

- معادل و جایگزین روانکار.

- وضعیت دستگاه حین روانکاری

قبل از برنامه ریزی در خصوص روانکاری تجهیرات و ماشین آلات مطالب زیر مطالعه نمایید :

وظایف عمده روغن عبارتند از :

ایجاد فیلم روغن بین سطوحی که روی هم می لغزند.

نظیر رینگ و پیستون روی سطح سیلندر و یا میل لنگ روی سطح یاتاقان.
فیلم روغن عبارت است از یک لایه نازک روغنی که بین سطوح قرار گرفته و از تماس دو سطح با یکدیگر جلوگیری می نماید.برای مثال دو قطعه شیشه را اگر بخواهیم روی هم حرکت دهیم ، این کار به سختی صورت می گیرد و دو سطح روی هم اثر تخریبی و خش خواهند گذاشت ولی با استفاده از فیلم روغن بین دو سطح می توان از تماس آنها جلوگیری کرد.

جلوگیری از زنگ زدن قطعات داخلی.
جذب حرارت از قطعات داخلی و انتقال آن به جداره های بیرونی.
آب بندی محفظه بمنظور جلوگیری از خروج گازهای متصاعد شده در موتورها.
شناورسازی براده ها و ذرات ریز داخلی و انتقال انها به داخل فیلترها.
واضح است که روغنی دارای کیفیت بالاتر است که بتواند پنج وظیفه فوق را بهتر انجام دهد.
یکی از خصوصیات مهم در شناسایی روغن گرانروی یا ویسکوزیته (viscosity) آن می‌باشد.

گرانروی :

عبارت است از مقاوت روغن در مقابل جاری شدن.

روغن بایستی نه آنقدر غلیظ باشد که نتواند داخل شیارهای نفوذ کند و نه آنقدر دارای غلظت کمی باشد که همواره بین قطعات نشست نموده و فیلم روغن را تشکیل ندهد.
روغنها در بازار معمولاً با اعدادی مانند 30،40، 50 معرفی می شوند و این اعداد نشان دهنده زمانی هستند که حجم ثابتی از روغن در دمای 40 درجه سانتی گراد از یک قیف استاندارد جاری می شود.

در تهیه برنامه روانکاری می توان از سرویسهای خدماتی و مشاوره ای که توسط تولید کنندگان روغن های صنعتی ارائه می گردد استفاده نمود.داشتن لیست روغن های مشابه و مرغوب با مارک های متفاوت می تواند بخش نت را در انتخاب انواع روغنهای مناسب و قابل استفاده یاری نماید.بدیهی است که باید تا حد ممکن از بکارگیری تنوع زیاد روغن های صنعتی خوداری شود.

عوامل زیر را در هنگام برنامه ریزی روانکاری تجهیزات لحاظ کنید :

- تعداد و محلهای روانکاری هر دستگاه.
-
دوره تناوب روانکاری.
-
نحوه و روش روانکاری ( استفاده از پمپ، گریس پمپ، قیف ، برس موئی... )
-
حجم و میزان روانکار.
-
نوع روانکار.
-
معادل و جایگزین روانکار.
-
وضعیت دستگاه حین روانکاری


کلیات

روانکاری " مناسب " یکی از مهمترین قسمتهای هر برنامه نگهدای می باشد . کلمه کلیدی در اینجا کلمه مناسب است . یک روانکاری مناسب زمانی انجام می شود که موارد زیر در آن رعایت شود :

1. استفاده از روانکار مناسب

2. استفاده صحیح و به کار بردن مقدار مناسب روانکار

3. چک کردن و کنترل کردن در بازده های زمانی تعیین شده اگر از روانکار نامناسب استفاده شود و یا به صورت نا صحیح از روانکار استفاده گردد ، نتایج اغلب ، بسیار نامطلوبتر از زمانی است که شما هیچگونه روانکاری انجام نداده باشید . هیچ نوع روانکار جادوئی وجود ندارد که تمامی نیازهای روانکاری را پوشش دهد و باعث صرفه جوئی های غیرمعمول نظیر افزایش عمر روانسازها و یا کاهش ضررهای ناشی از اصطحکاک گردد .

مانند همه محصولات دیگر ، افرادی که در کار فروش روانکار هستند ادعاهائی در مورد قابلیت های محصول خود مطرح می کنند که تاکنون توسط تست ها و آزمایشهای فنی تأئید نشده است .

خصوصیات یک روانکار :

روغن ها :

روغن معدنی یکی از معمولترین روانکارها می باشد و به غیر از چند استثناء برای روانکاری اغلب آسانسورها و پله برقی ها به کار برده می شود . از انواع دیگر روانکارها می توان به روغن های گیاهی ، سیلیکونی ، فسفات استر ، فلوروکربنها اشاره کرد . از روغنهای ذکر شده تنها نوع سیلیکونی کاربرد زیادی در صنعت آسانسور دارد . سایر روانکارها در موارد خاص کاربرد دارند و از آنها ممکن است تنها در شرایط خاصی استفاده شود .

خصوصیات روغن ها :

1. گرانروی یکی از مهمترین خصوصیات یک روغن بوده و نیز یکی از معیارهای سنجش غلظت روغن است . هر چه این عدد بیشتر باشد نشان دهنده غلظت بیشتر روغن است . گرانروی یک روغن بر اساس زمانی که مقدار 60 میلی لیتر از آن در دمای تعیین شده از یک منفذ استاندارد عبور می کند برحسب ثانیه تعیین می گردد . واحدهای گرانروی Saybolt Second Universal ) SSU ) می باشند . از گرانروی مطلق و گرانروی کینماتیک نیز ممکن است استفاده شود . گرانروی کینماتیک با واحد سانتی استوک به صورت وسیعی در مهندسی و آزمایشگان به کار می رود و نشان دهنده استحکام برشی روغن است . در سیستم SAE ، درجه بندی روغن موتور به صورت حداکثر و حداقل گرانروی در یک دامنه تغییر دما تعیین می گردد . به طور مثال ، SAE 5W-20 دارای گرانروی بالاتری در دمای 200 درجه فارنهایت بوده و معمولاً به عنوان روانکار برای سیم بکسل ها به کار برده می شود . روغن های با گرانروی کمتر معمولاً به " روغنهای سبک " معروف هستند .

هنگام استفاده از سیستم SSU برای نشان دادن میزان گرانروی حتماً باید دمائی که در آن اندازه گیری انجام شده ذکر شود . از آنجائی که گرانروی با دما تغییر می کند ، بی معنا خواهد بود اگر که گرانروی را بدون مشخص کردن دمای مربوطه استفاده کنیم .

2. شاخص گرانروی ، بیانگر عددی تغییر در گرانروی متناسب با تغییرات دما می باشد . هرچه که مقدار این شاخص بیشتر باشد ، گرانروی به میزان کمتری با دما تغییر می کند . کمترین میزان شاخص گرانروی صفر و بالاترین میزان آن 100 می باشد . هنگامی که این شاخص پایه گذاری شد ، مقیاس طوری تعیین شده بود که 100 حداکثر مقدار شاخص قابل دسترسی بود . با این وجود بعضی از روغن های جدید ، به خصوص روغن های مصنوعی ممکن است دارای شاخص گرانروی بالای 150 باشند .

3. نقطه ریزش ، دمائی است که در آن روغن در شرایط از پیش تعیین شده ، جاری می‌شود .

4. نقطه اشتغال ، دمائی است که در آن دما در حضور اکسیژن ، احتراق اتفاق می افتد .

5. نقطه آنیلین ، معیار و مقیاسی است برای نمایش قابلیت حلالیت یک محصول نفتی .

افزودنی ها :

به تمامی روانکارها افزودنی های مختلفی برای بالا بردن و بهبود عملکرد و خواص افزوده می شود .

1. بهبود دهنده شاخص گرانروی : این افزودنی میزان تغییر گرانروی را نسبت به دما کاهش می دهد. روغن های چند درجه دارای چنین افزودنی هائی هستند .

2. زداینده ها : از این افزودنی برای کاهش رسوب در اطراف قطعات متحرک ، استفاده می شود .

3. پراکنده ها : برای معلق نگاه داشتن آلودگی ها در داخل روغن و جلوگیری از جمع شدن آنها بر روی سطوح جدا کننده ها لغزش روی آن انجام می شود کاربرد دارند . این افزودنی همچنین باعث می شود تا بتوان آلودگیهای بزرگ را به راحتی فیلتر و تصفیه کرد .

4. عاملهای ضد سائیدگی : این افزودنی ها برای کاهش اصطحکاک در مواردی که فشار بالاست کاربرد دارد .

5. آنتی اکسیدان ها : این گونه افزودنی ها برای کاهش میل به ترکیب شیمیائی روغن با اکسیژن به کارگرفته می شود .

6. کاهنده های زنگ و خوردگی : این افزودنی ها را برای خنثی کردن اسید هائی که در اثر استفاده دراز مدت از روغن تولید شده ، استفاده می شود .

7. پیراینده های اصطکاک : از این افزودنی ها برای بهبود خاصیت کاهندگی اصطحکاک روغن استفاده می شود .

8. کند کننده های نقطه ریزش : این افزودنی ها باعث کاهش تشکیل کریستالهای مومی در دماهای پائین می شوند و به همین سبب دمای ریزش کاهش پیدا می کند .

9. کاهنده های کف ( ضد کف ) : روغنی که دارای کف باشد روانکار بسیار ضعیفی است.

این افزودنی ها باعث از بین رفتن حباب های هوا شده و میزان کف موجود در روغن را کاهش می دهند. برای شرایط و نیازهای خاص ، افزودنی های دیگری نیز وجود دارند . ترکیب دقیق شیمیائی افزودنی ها برای تولید کنندگان آنها جزء رازهای تجاری محسوب می گردد . به طور معمول ، یک تولید کننده ، روانکار خود را با یک نام و نشان تجاری خاص عرضه می کند .

معمولاً بهتر است از روانکارهائی که کارخانه تولید کننده مشخص می کند استفاده شود . حتی اگر بهای آن از سایر روانکارهای موجود گرانتر باشد . از تولید کنندگانی که ادعا می کنند با دو یا سه نوع روانکار تمامی نیازهای روانکاری را پوشش می دهند برحذر باشید . استفاده از روغن و روانکار نامناسب می تواند عواقب بسیار جبران ناپذیری را در پی داشته باشد .

کاهش تشکیل آلاینده ها و رسوبات در تجهیزات، موجب بهبود کارآیی و افزایش طول عمر آنها می گردد:

در جعبه دنده ها، دستگاههای هیدرولیک و موتورها پس از مدت کوتاهی کار، آلودگی هایی ناشی از اکسید شدن روغن در حین کار بروز می کند که علت اصلی آن وجود آب و ذرات ناشی از اصطکاک است. در نتیجه اکسید شدن روغن رسوبات صمغی و لجن در روغن تولید می گردد که خود باعث آلودگی روغن می شود در نهایت این آلودگی ها سبب تخریب روغن، افزایش دمای کارکرد، مصرف بیشتر انرژی، سایش اجزاء دستگاه و ... می شود. حتی ممکن است در دستگاه های جدید نیز این گونه آلودگی ها که موجب بروز مشکلات فوق می گردند مشاهده شود.

امروزه به کمک تکنولوژی های جدید می توان آلودگی ها را در دستگاه های در حال کار کاهش داد مثلا سطوح فلزی به گونه ای طراحی شده اند تا عوامل فعال کننده سطحی آنها مانع از تشکیل رسوبات صمغی بر روی سطوح فلزی شود. این فرآیند موجب افزایش عمر دستگاه و کاهش فرسودگی فلزات، کاهش دمای عملیات و مصرف انرژی می شود.

تخریب روانکار

درک اساسی چگونگی تشکیل رسوبات به منظور هدایت سیستم به سمت بهبود قابل اطمینان وضعیت، ضروری است. تشکیل رسوبات هنگامی که روانکار تخریب و به ترکیبات دیگر تبدیل می گردد، بیشتر می شود. روش های مشخصی برای کاهش سرعت تشکیل رسوبات وجود دارد. روانکارها می توانند به دلایل مختلف (جدول 1) تخریب شده و تولید لجن، لاک و رسوبات کنند. هنگامی که روانکار اکسید می شود، مواد فعالی را تشکیل می دهد که با تغییر ساختار به رسوبات مختلف تبدیل می شوند.

جدول 2 انواع رسوبات تشکیل شده و مشکلات ایجاد شده به هنگام تخریب روغن روانکار را نشان می دهد.

رسوبات با پایه هیدروکربنی نظیر مواد صمغی، مواد چسبناک و لجن، ناشی از روغن اکسید شده هستند. این مواد معمولا دارای اندازه مولکولی بزرگ در مقایسه با سایر ترکیبات موجود در روانکار (به غیر از روغن پایه) هستند.

به طور کلی دو روش پلیمریزاسیون مرحله ای و پلیمریزاسیون زنجیری موجب تولید مولکول های بزرگ می گردند. پلیمریزاسیون مرحله ای از طریق واکنش های مرحله ای بین عوامل شیمیایی مولکول های واکنش گر انجام می گیرد. اندازه مولکول با سرعت نسبتا کمی افزایش می یابد. دو مولکول فعال با یکدیگر ترکیب شده و تولید مولکول فعال دیگری را می نماید و این مولکول بزرگ با یک مولکول دیگر ترکیب می شود ... و به همین منوال این عمل ادامه می یابد تا زمانی که مولکول های بزرگ پلیمر تشکیل گردند.

پلیمریزاسیون زنجیری نیاز به یک مولکول آغازگر دارد که این مولکول معمولا به شکل رادیکال آزاد و یا سایرگونه های فعال (آنیون ها یا کاتیون ها) ممکن است توسط شرایط موجود در جعبه دنده ها (transmissions انتقال دهنده های نیرو)، سیستم های هیدرولیک یا موتور تولید گردند. پلیمریزاسیون زنجیری توسط انتشار مولکول فعال از طریق تعداد زیادی از مولکول های بزرگ فعال دیگر صورت می گیرد.

جدول 1. منابع تشکیل رسوب

عملکرد

مکانیزم

روغن پایه

روغن پایه شامل یک یا بیشتر از اجزاء و عوامل زیر است:

اجزای سبک، گوگرد، هیدروکربن های با وزن مولکولی پایین

ناکافی بودن غلظت مواد افزودنی مؤثر

غلظت کم مواد و عوامل ضد سایش و نیز اصلاح کننده های اصطکاک موجب ایجاد خوردگی در فلزات و نیز تشکیل حرارت منطقه ای دراثر اصطکاک می گردد. غلظت پایین دمولسیون کننده می تواند موجب تشکیل امولسیون روغن شده که خود موجل افزایش اکسیداسیون روغن می گردد.

فلزات زرد

(مس _ برنج _ برنز)

آلودگی های حاصل از منابع خارجی و داخلی می توانند به عنوان کاتالیست فرآیند اکسید شدن روغن عمل کنند و موجب تخریب مواد افزودنی و تشکیل رسوبات شوند.

حرارت

دمای بالای محیط، حرارت عملیات (ناشی از انرژی سینتتیکی حاصل از احتراق)، گرمای اصطکاک (ناشی از تماس فلز با فلز) و فشار (ناشی از ورود هوا و یا عملیات ) موجب تسریع در اکسیداسیون روغن و تخریب مواد افزودنی گردند.

آب

محصولات جانبی احتراق و یا آلودگی های خارجی می توانند باعث افزایش اکسید شدن روغن و تشکیل رسوبات و کاهش و تخریب مواد افزودنی گردند.

اسیدها

می توانند هنگامی که روغن پایه به صورت ترکیبات فعال و واکنش پذیر شکسته می شود، تشکیل گردند. این عمل موجب تولید لجن، صمغ و رسوبات می شود همچنین اسیدها از طرِق منابع خارجی از قبیل شستشو با اسید می توانند وارد سیستم شوند. انواع عمومی این اسیدها شامل: اسید سولفوریک، اسید نیتریک و اسیدهای کربوکسیلیک هستند.

مواد قلیایی و حلال ها

آلودگی های خارجی موجب شکستن مولکول های روغن به ترکیبات فعال می گردد. ترکیبات فعال می توانند پلیمریزه شده و تولید رسوبات شبیه به رزین نمایند.

چرا رسوبات تشکیل می شوند؟

دلایل متعددی برای تشکیل رسوبات در سیستم های روانکاری وجود دارد. به طور کلی، روغن از یک ساختار مولکولی به ساختار دیگری تغییر شکل می یابد و رسوبات به صورت مخلوطی از آلودگی ها نظیر دوده حاصل از روغن موتور و یا لجن های ناشی از ورود گرد و غبار در روغن هستند. همچنین این رسوبات ممکن است ناشی از مواد صمغی تشکیل شده در شرایط دمای بالا و بار زیاد بر روی اجزاء دستگاه باشند. بیشتر اوقات رسوبات ناشی از تخریب روغن پایه و تشکیل ترکیبات جدید در اثر تغییر ساختار روغن است که در طول مراحل مختلف توسعه می یابد. اولین مرحله عبارت است از شکل گیری ترکیبات فعال و یا رادیکال آزاد که ناشی از عوامل مختلفی است. ابتدا این ترکیبات در سیستم ترکیب و یا پلیمریزه شده و به ترکیبات جدیدی به شکل رسوبات تبدیل می شوند. شرایط محیطی مختلفی موجب سهولت ایجاد رسوبات می شوند که از جمله عبارتند از:

دما، فشار، آب، حلال ها، اسیدها، ترکیبات قلیایی و فلزات مختلف.


جدول 2. نگاهی به رسوبات معمول در روانکارها

رسوب و تشکیل آن

مکانیزم بالقوه

رسوبات در یاتاقان، سیلندر، پیستون، دنده ها، پمپ ها و توربین ها یافت می شوند. روغن یا سوخت اکسید شده، تشکیل مواد چسبناک می دهد و این ترکیبات تبدیل به رسوباتی حاوی مولکول هایی می گردند که در روغن غیر قابل حل هستند.

پوشش لاک مانند، موجب سایش دنده ها به دلیل افزایش غیر متعادل مصرف انرپی می گردد. این عامل مربوط به عدم روانکاری مناسب در سطح فلز و افزایش گرانروی روغن است.

رسوبات صمغی در یاتاقان، سیلندر، پیستون، دنده ها، پمپ ها و توربین ها یافت می شوند. هرگاه لایه رسوب بر روی سطوح در معرض دما و فشار بالاتر قرار گیرد، پخته شده و غیر قابل حذف می شود.

رسوبات صمغی منجر به سایش دنده ها ناشی از افزایش مصرف انرژی شده و باعث افزایش دما به دلیل فقدان روانکاری برروی سطح فلز می گردد. برداشتن این لایه بسیار مشکل است.

لجن در داخل ظروف روغن، وسایل نگهداری و ذخیره و نیز یاتاقان ها تشکیل می گردد. تشکیل لجن از وقتی شروع می شود که آلودگی ها شروع به ته نشین شدن در خارج از روغن می نمایند. رسوبات با جمع شدن آلودگی ها بر روی یکدیگر افزایش یافته و منجر به تخریب مواد افزودنی و اکسیداسیون آنها می گردند.

لجن مجموعه ای از آب، ترکیبات کربنی، روغن اکسید شده و ترکیبات اسیدی است که منجر به تخریب بیشتر روغن می گردد. لجن می تواند مانع از جاری شدن روغن شده که خود منجر به افزایش فشار، دما، خوردگی و گرانروی روغن می گردد.

مواد چسبناک، به طور معمول در محفظه روغن و یا ناحیه احتراق موتور یافت می شوند. ترکیبات چسبناک هنگامی که هیدروکربن های روغن و یا سوخت و نیز مصولات حاصل از احتراق در اثر دمای بالا شکسته می شوند، تشکیل می گردد. مواد چسبناک به عنوان متصل کننده آلودگی ها به پیستون ها، رینگ ها و لوله ها عمل می نمایند.

مواد چسبناک می توانند برروی لوله ها، پیستون ها، حلقه ها، شیارهای رینگ (ring grooves) و دیواره های سیلندر تشکیل گردند و موجب ایجاد آلودگی و نیز ترکیبات زائدی که باعث محدود شدن روانکاری است، باشند. کاهش روانکاری موجب افزایش اصطکاک و خوردگی و نیز محدود نمودن وظیفه انتقال حرارت روغن روانکار می گردد.

رسوبات کربنی موجود در تمام سیستم های روانکاری از قبیل موتورها، بلبرینگ ها، پمپ ها، دنده ها و یاتاقان ها، بیشترین شکل این رسوبات به صورت دوده است. همچنین می توانند به صورت ترکیبات شبه قیر نیز وجود داشته باشند. دوده شکل پیشرفته تشکیل رسوب است.

به محض تشکیل رسوبات کربنی، آلودگی های اضافی تشکیل شده موجب تسهیل در اکسیداسیون می گردد. رسوبات می توانند تشکیل یک توده ژله ای و یا سیال را بدهند. رسوبات باعث محدود شدن جریان روانکار و عملکرد مواد افزودنی می گردند.

رادیکال های آزاد از طریق روش های مختلف تشکیل می شوند. یکی از این روش ها، استفاده از انرژی مکانیکی حاصل از فشار ترکیب شده با تغییر شکل برشی و یا تغییرات ناگهانی (شوک) در طول یک فرآیند غیر دمایی است.

روش دیگر ناشی از وجود اسیدها است که موجب شکستن پیوندهای مولکولی می گردد. مولکول های با زنجیر کوتاه و یا متوسط موجود در روغن می توانند تخریب و شکسته شده و تولید رادیکال های آزاد نمایند. رادیکال های دارای زنجیر کوتاه به سرعت به گونه های شبیه به خود و یا آلودگی ها متصل شده و توسط پلیمریزاسیون به رسوبات تبدیل می گردند. روغن با مولکول های زنجیر بلند، رادیکال هایی با فعالیت کمتر، تولید می کند که دلیل آن ناشی از طول پیوند و حرکت محدود مولکولی است.

حرارت زیاد و فشار نیز می تواند باعث شکسته شدن پیوند مولکولی شده و تشکیل رادیکال آزاد نماید که با پلیمریزاسیون رادیکال ها رسوبات ایجاد می شوند.

آرایش های مولکولی بی شماری در رسوبات وجود دارد، چنانچه قبلا اشاره شد، تشکیل رسوبات به طور کلی نتیجه تخریب روغن پایه و تبدیل آن به ترکیبات فعال است. اولین مولکول فعال تشکیل شده و طی واکنش با سایر ترکیبات فعال دیگر تغییر ساختار داده و تولید رسوب می کند. واکنش کلی برای تشکیل رادیکال آزاد و پلیمریزاسیون زنجیری در سه مرحله اتفاق می افتد:

مرحله آغازی

پلیمریزاسیون زنجیری رادیکال نوعی پلیمریزاسیون است که در آن یک رادیکال آزاد با زنجیر بلند با حمله به رادیکال های آزاد دیگر، (اسیدها و یا گونه های فعال که ناشی از تاثیر حرارت، آب، اسیدها، آلودگی ها و غیره هستند) مولکول اولیه را تشکیل می دهند.

مرحله انتشار

پلیزاسیون با افزایش واکنش زنجیره مولکول های فعال به مولکول های رشد یافته دارای انتهای رادیکالی، موجب تشکیل یک یا دو پلیمر به شکل رسوب (لجن، مواد صمغی و غیره) می گردد.

مرحله انتهایی

دو رادیکال آزاد رشد یافته (بزرگ) به صورت غیر متناسب با یکدیگر ترکیب و موجب اتمام واکنش پلیمریزاسیون می شوند (افزایش رسوبات).

سرعت واکنش با زمان و حرارت افزایش می یابد. این طبیعی است که فرض شود با گذشت زمان، سرعت کاهش یابد، بدین دلیل که غلظت مولکول های فعال و آغازگرها به دلیل شرکت در واکنش کاهش می یابد. اما درست خلاف این موضوع صحت دارد. سه مسیر که تحت نام مراحل انتهایی، نفوذ و مرحله کنترل (Termination steps , diffusion , controlled) شناخته شده است دلیل این رفتار را توجیه می نماید.

- اولین مسیر عبارتست از نفوذ دو رادیکال در حال انتشار تا زمانی که این دو در مجاورت یکدیگر قرار گیرند.

- دومین مسیر عبارتست از نفوذ جزیی زنجیره های پلیمر در این مسیر، نوآرایی دو زنجیره به گونه ای اتفاق می افتد که دو انتهای رادیکال آزاد هر یک از زنجیره ها به اندازه کافی به یکدیگر نزدیک شده تا بتوانند برهم کنش انجام دهند.

- سومین مسیر عبارتست از برهم کنش شیمیایی دو انتهای رادیکالی زنجیره ها برای تشکیل پلیمر و یا در این بحث تشکیل رسوب در طول واکنش.

مسیر اول سریع تر از افزایش سرعت دومین مسیر کاهش می یابد و در نتیجه یک شتاب خود به خودی در سرعت ایجاد می گردد. روند سینتتیک واقعی واکنش بسیار پیچیده و خارج از بحث این مقاله است.

هرگاه اکسیداسیون روغن و یا پلیمریزاسیون رادیکال آزاد گونه های فعال به سرعت تشخیص داده نشود، موجب بروز مسائل جدی خواهد شد. (جدول 2).


بررسی سیر تکامل ترمز اتومبیل ها از ابتدا تا امروز

امروزه استفاده از ترمزهای ضد بلوکه ABS به صورت استاندارد در اکثر اتومبیلها دیده می شود و کمپانی بوش از ابتدای سال 1987 تاکنون بیش از ده ملیون دستگاه ترمز ضد بلوکه ABS تولید و روانه بازار کرده است برای آگاهی از سیر تکامل ترمز اتومبیلها ، تاریخچه ساخت و چگونگی بهینه سازی و پیشرفت آنها را با هم مرور می کنیم در گذشته برای بیشتر رانندگان ، راندن و بحر
دسته بندی مکانیک
فرمت فایل doc
حجم فایل 2441 کیلو بایت
تعداد صفحات فایل 85
بررسی سیر تکامل ترمز اتومبیل ها از ابتدا تا امروز

فروشنده فایل

کد کاربری 8044

مقدمه :

مروری بر سیر تکامل ترمز اتومبیل ها از ابتدا تا امروز

امروزه استفاده از ترمزهای ضد بلوکه ABS به صورت استاندارد در اکثر اتومبیلها دیده می شود و کمپانی بوش از ابتدای سال 1987 تاکنون بیش از ده ملیون دستگاه ترمز ضد بلوکه ABS تولید و روانه بازار کرده است برای آگاهی از سیر تکامل ترمز اتومبیلها ، تاریخچه ساخت و چگونگی بهینه سازی و پیشرفت آنها را با هم مرور می کنیم در گذشته برای بیشتر رانندگان ، راندن و بحرکت درآوردن و یا ادامه حرکت اتومبیلها جالبتر از ترمز کردن به نظر می رسید و شاید کمتر کسی به ترمز اتومبیل و نقش حیاتی آن توجه نشان می داد .

با ورق زدن برگهای تاریخ صنعت اتومبیل سازی و توقف در سال 1885 به زمانی می رسیم که کارل بنز برای نخستین بار از لنتهای ترمز چوبی و دیسکها یا صفحه های تسمه ای برای متوقف کردن اتومبیل های ساخت خود ، استفاده کرد کارل بنز این ایده را دقیقا ً از روی قطارها یا لوکوموتیوهای آن زمان کپی کرده بود بتدریج راه حلهای دیگری برای توقف اتومبیل توسط مبتکرین در این زمینه بکار بسته شد مثلا ً ترمزهای دایملر که شامل یک کابل فولادی بود و به دور یک صفحه فلزی در قسمت درونی چرخ پیچیده شده بود و در زمانی که این کابل کشیده می شد پس از مدتی وسیله نقلیه را مجبور به توقف می کرد ولی یکی از بزرگترین معایب اینگونه ترمزها این بود که در زمانی که راننده اتومبیل خود را در سر بالایی متوقف می کرد درست پس از توقف ، از فشار این کابل کاسته و خودرو به طرف عقب کشیده می شد بعدها راه حلی برای این مشکل پیدا شد و آن راه حل این بود که به وسیله یک اهرم بلند نیزه مانند که با بازوهای کششی در قسمت پشت اتومبیل در ارتباط بود درست در لحظه پس زدن خودرو این اهرم نیزه مانند به درون زمین فرو می رفت و اتومبیل را در سر بالایی متوقف می کرد .

پیش از پایان قرن هجدهم فکر ساختن ترمزهای مؤثرتر وارد فازهای جدی تری شد و در سال 1895 " فردریک لانکستر " انگلیسی نوعی ترمز کلاچ مانند را برای متوقف کردن اتومبیل بکار برد ساختار این ترمز بدینگونه بود که یک کلاچ مخروطی شکل که دارای یک صفحه سایشی (اصطکاکی ) در پشت بود وظیفه برقراری ارتباط بین موتور و جعبه دنده را بعهده داشت در زمانی که این کلاچ بطرف عقب کشیده می شد ارتباط موتور وجعبه دنده با یکدیگر قطع می شد و هنگامی که بیشتر به طرف عقب کشیده می شد از طریق صفحه سایشی خود با یک دیسک مرتبط شده و اتومبیل را بحالت ایست وا می داشت بدین ترتیب می توان گفت که ترمز گیری در تمام خودروها از طریق دستگاه انتقال قدرت صورت
می گرفت و این شروعی بود برای ترمزهای دیسکی .

بکارگیری سیستمهای انتقال قدرت ترمز به شیوه هیدرولیکی در گذشته تنها در دوچرخه ها کاربرد داشت و در سال 1897 دو نفر بنامهای Bayley و Brigg نخستین سیستم هیدرولیکی را برای وسائط نقلیه چهار چرخ ساخته و مورد بهره برداری قرار دادند در این سیستم فعالیت ترمزها با استفاده از نیروی فنر و عقب نشینی آنها بطریق هیدرولیک انجام می گرفت در سال 1897 آقای Herbert frood فعالیتهای خود را بیشتر بر روی مواد تشکیل دهنده آن چیزی که ما امروز آنرا لنتهای ترمز می نامیم قرار داد .

وی در سال 1902 موفق به گشایش شرکتی به نام Frodo گردید و در سال 1908 نخستین نمونه از لنت ترمزهای خود را که از ماده ای مقاوم به نام آزبست ساخته شده بود آماده فروش به خریداران نمود اینگونه لنتها تا سال 1921 مورد بهینه سازی قرار گرفتند و در این سال با استفاده از فن آوری ریخته گری از قیمتی ارزانتر از گذشته برخوردار گردیدند شاید ساخت لنتهای ترمز از Asbest که ماده ای مقاوم در برابر گرما است یک تحول اساسی در ساخت لنتهای ترمز باشد چرا که تا پیش از این زمان تنها از فلز در مقابل فلز ( دیسک و لنت ) استفاده می شد و شرکت بوگاتی نیز استفاده از فلز در برابر فلز را تا اواسط قرن بیستم همچنان مورد استفاده قرار می داد .

تاریخ تولید ترمزهای دیسکی به سال 1896 باز می گردد در این سال شرکت union electicitats gesellscaft با ساخت دیسکهای الکترومغناطیسی مجهز به یک صفحه فرسایشی نخستین گام را در این جهت برداشت طرز کار این سیستم بدین ترتیب بود که لنتهای ترمز با نیروی الکترومغناطیسی بطرف صفحه یا دیسک گردان فشرده و فشار لازم را برای توقف اتومبیل به دیسک ترمز وارد می آورند در سال 1901 آقای می باخ موفق به ساخت نوعی ترمز کاسه ای مجهز به لنتهای داخلی گردید این ترمزها در سال 1903 بر روی مرسدسهایی که دارای 40 اسب بخار نیز بودند مصرف گردید در همین سال کمپانی مرسدس نصب ترمز بر روی چرخهای جلو را نیز به عنوان وسایل اضافی و سفارشی به خریداران خود پیشنهاد می کرد .

ولی هیچگاه از این وسیله سفارشی استقبال در خور توجهی نشد چرا که رانندگان آن زمان ترمز برای محور جلو خودرو را خطرناک می دانستند .

ترمز اتومبیل ها برای هر چه کامل تر شدن راه دور و درازی را در پیش داشتند و فکر ساختن ترمزهای هیدرولیکی و با فشار روغن نیز عده ای را به خود مشغول داشت در سال 1908 آقای E.W.Weight ترمزی را طراحی و ساخته بود که تقریبا ً چیزی بود شبیه ترمزهای امروزی یعنی استفاده از نیروی فشار روغن و هیدرولیک و بکارگیری سیلندر و پیستون برای ترمزها

بدون شک ساخت ترمزهای هیدرولیکی گام مؤثری در زمینه بهینه سازی ترمزها محسوب می شد ولی این ترمزها نیز همچنان نقص داشته و افرادی نیز در فکر ساخت ترمزهای بهتر و یا سیستمهای کامل کننده و تقویت کننده ترمزهای هیدرولیکی بودند .

در سال 1919 آقای PARRY THOMAS نقشه و امکان ساخت بوستر ترمزها را مورد بررسی قرار داده بود این بوسترها در سال 1923 متولد شده و به واقعیت پیوستند ولی هنوز می باید زمان درازی بگذرد تا این سیستم های تقویت کننده عادی و بصورت استاندارد در آیند .

در سال 1940 شرکت گیرلینگ برای خودروهای نظامی ترمزهای دیسکی طراحی و تولید نمود این ترمزها شباهت زیادی با صفحه کلاچ های امروزی داشته یعنی دارای دو پوشش سایشی در دو طرف دیسک بودند .

سیستم ترمزهای هیدرولیکی همانگونه که می دانیم یکی از بهترین و مطمئن ترین ها است ولی اغلب این سیستم به صورت نخستین خود ( تک کاناله ) دارای عیب بزرگی بود بدین ترتیب که اگر هر گاه بدلیلی شکستگی جزئی در یکی از لوله های ترمز بوجود می آمد در اثر نشت مایع و یا ترمز و یا وارد شدن هوا در سیستم کلی ، تمام سیستم ترمز از حالت فعالیت خود بیرون آمده و خطر آفرین می شد.

برای از میان برداشتن این عیب ، خودروسازان و یا شرکتهای تولید کننده سیستمهای ترمز مجبور به تقسیم کردن نیروی ترمز در دو مدار یا کانال جداگانه بودند بدین ترتیب که نیروی ترمز ( از طریق فشار هیدرولیک ) به دو بخش یکی برای چرخهای جلو و دیگری برای چرخهای عقب تقسیم شدند .

پیشرفت و بهینه سازی سیستم ترمز اتومبیل ها با سرعتی نه چندان سریع صورت گرفته است و خوشبختانه امروزه ترمزهای سه و چهار کاناله ضد بلوکه ABS در بیشتر اتومبیلها بصورت استاندارد وجود ندارد حال ما در این پروژه قصد داریم به بررسی قسمتهای مختلف ترمز ABS و معمولی بپردازیم و سپس در پایان این دو سیستم ترمز را با یکدیگر مقایسه کنیم .

فصل اول :

تجزیه سیستم های ترمز هیدرولیکی

1-1- ترمزهای هیدرولیکی بدون تقویت کننده :

تنها نیرویی که در ترمزهای بدون تقویت کننده برای فشار دادن کفشک روی ترمز مورد استفاده قرار می گیرد نیروی پای راننده روی پدال ترمز است هیچ منبع انرژی دیگری مورد استفاده قرار نمی گیرد اینگونه ترمزها معمولا ً برای ماشینهای سبک تر و کوچکتر مورد استفاده قرار می گیرد نیرویی که بر پدال وارد می شود موجب جابجایی پدال می شود که در نتیجه آن میل انگشتی روی سیلندر اصلی فشار وارد می کند این اتصال پدال به این خاطر تعبیه شده است تا با ایجاد نیروی مکانیکی بین پدال و سینلدر اصلی ، پیستون سیلندر اصلی حرکت کند مساحت سطح مقطع سیلندر ترمز چرخ بیشتر از مساحت سطح مقطع سیلندر اصلی می باشد از آنجایی که میزان حرکت پیستون سیلندر اصلی با توجه به میزان حرکت پدال تعیین می شود پس رابطه بین سیلندر اصلی و سیلندر ترمز چرخ نیز محدود می شود به منظور حفظ نیروی پای راننده روی پدال کمتر از حد ماکزیمم که حدودا ً N445 (lb100) می باشد تقویت کننده ترمز که به صورت خلاء یا پمپهای فشار هستند تعبیه شده اند .

(PI) خط فشار ترمز هیدرولیک که توسط فشار پای راننده روی پدال () تولید می شود را می توان به شکل زیر محاسبه کرد :

(1-1)

که در این فرمول داریم :

Amc = مساحت سطح مقطع سیلندر اصلی ،

= نیروی پای راننده روی پدال و (lb)N

= نسبت بازوی پدال

= بازده بازوی پدال

میزان معمول بازده بازوی پدال 8/0 می باشد که شامل بازده سیلندرهای اصلی به فنر بازگرداننده می باشد .

نیروی ترمز () را برای هر اکسل با توجه به عوامل ترمز بصورت زیر محاسبه می کنیم .

(1-2)

که خواهیم داشت :

= مساحت سینلدر ترمز چرخ

BF = عوامل ترمزی

= فشار بر روی پدال که برای متصل کردن کفشکهای ترمز به ترمز کفشکی یا ترمز دیسکی نیاز است

R = شعاع لاستیکها ( چرخ ماشین ) (in)mm

r = شعاع مؤثر ترمز دیسکی یا کفشکی (in)mm

= بازده سیلندر ترمز چرخ

نیروی فشار جلویی که برای ترمزهای دیسکی در یک شرایط خوب مکانیکی استعمال می شود کمتر از 5/3 الی 5/7 برابر با (sto 10 psi) می باشد و حتی در برخی مواقع ممکن است اصلا ً به حساب نیاید فک ترمز شناور ترمزهای دیسکی که سطح کشویی آنها زنگ زده اند ممکن است نیروی فشار به جلوی بیشتری نیاز داشته باشند نیروی فشار به جلو در ترمزهای کفشکی با توجه به نیروی فنرهای بازگرداننده کفشکهای ترمز و با مساحت سیلندر ترمز چرخ محاسبه می شود که ممکن است تا حدود 70 الی 172 که برابر است با (psi250 الی 100 ) بشود بازده سیلندر ترمز چرخ تقریبا ً 96/0 در ترمزهای کفشکی و 98/0 در ترمزهای دیسکی می باشد .

کاهش سرعت در چرخهای باز از جمع برآیند نیروی ترمز تمام اکسلها محاسبه می شود و یا

(1-3)

R و F که در ترمز دیده می شود مبین این امر است که پارامترهای ترمزهای چرخها که عبارتند از : و BF و r باید برای ترمز چرخهای جلویی (F) و عقبی (R) محاسبه شوند اگر برای ترمز گرفتن بیش از دو اکسل مورد استقاده قرار بگیرند آنگاه پارامترهای جدیدی به سمت راست معادله (1-3) اضافه می شود .

برای ماشینهایی که سوپاپ تنظیم دارند خط فشار ترمزهای عقبی و جلویی برای فشار بالای نقطه زانو یکسان نیست برای محاسبه خط فشار ترمزهای عقب و جلو می توانید از فرمول (1-11) استفاده نمایید .

1-2- تجزیه سیستم تقویت کننده

1-2-1- نگاهی کلی

سیستم های تقویت ترمز این امکان را به یک راننده معمولی ( از لحاظ هیکل) می دهد تا فقط با فشاری که روی پدال وارد می آورد پدال حرکت کند تقویت کننده ها و فاکتورهای مختلف آن باید با توجه به وسیله نقلیه موتوری باشند .

موارد زیر باید در نصب تقویت کننده های ترمزی مورد توجه قرار بگیرد .

1- تقویت کننده ها باید به اندازه کافی حساس باشند تا در مواقعی که فشار کمی روی پدال وارد می شوند بتوانند به خوبی اعمال ترمز را تنظیم کنند ( سطوحی که سطح مالش کمی دارند ) وقتی فشار وارده روی پدال ترمز کمتر از 13 تا 20 N( lb5 الی 3 ) باشد تقویت کننده های ترمز باید مورد استفاده قرار بگیرند .

2- میزان فشار وارده بر پدال و کاهش سرعت باید به نحوی باشند که شخص قادر به تخمین زدن خشکی ترمز ها باشد .

3- زمانی که تقویت کننده ها برای عمل کردن نیاز دارند باید کمتر از 1/0 ثانیه باشند تا در مواقعی که با حرکت (Ft/s 3) m/s1 پدال ترمز به یک ترمز فوری داریم ترمزها به موقع عمل کنند .

4- انتقال نیرو از تقویت کننده ها به ترمزهای بدون تقویت کننده باید به نحوی باشد که شخص قادر باشد در مواقع ضروری تا جائیکه نیاز دارند روی پدال ترمز فشار بیشتری وارد کند .

5- درصد اطمینان تقویت کننده باید بالا باشد تا احتمال عدم عملکرد صحیح آنها کاهش یابد عدم کارکرد تقویت کننده باعث دستپاچگی راننده خواهد شد و ممکن است شخص بر اثر سردرگمی در مواقع ضروری پایش را از روی پدال بردارد .

وقتی که بر اثر عدم عملکرد تقویت کننده ها پدالها به سختی حرکت می کنند برخی رانندگان اینگونه تصور می کنند که کل سیستم ترمز ماشین دچار نقص شده و سرعت ماشین به حدی که مورد نیاز است کاسته نخواهد شد .

1-2-2- ترمز بوستردار( ترمزهای تقویت شده با خلاء) :

ترمزهای هیدرولیکی تقویت شده با خلاء که به آنها ترمز بوستردار نیز می گویند از یک تقویت کننده خلائی به طوری که در تصویر 1-1 آمده ، استفاده می کنند تا به راننده با افزایش نیرو برای چسباندن کفشکهای ترمزی در ترمز کفشکی کمک کنند سیستم معمولی ، که به آنها mastervac نیز می گویند دقیقا ً روی دیواره جداکننده موتور از اتاق سرنشین ، جلوی پای راننده بالا می روند این سیستم ها بین پدال پایی و سیلندر اصلی بالا می رود .

نیروی کمکی نیروی فشار به جلو را ، که پیستون سیلندر اصلی را فعال می کند افزایش می دهد با تغییر فشار در پیستون تقویت کننده و یا دیافراگم خلاء و یا فشار کم در قسمت سیلندر اصلی ایجاد می شود . ( همچنین توسط فشار بالا یا اتمسفر یک در بخش ورودی نیز ، تولید می شود .

میزان نیروی کمکی با توجه به میزان نیروی وارده روی پدال ترمز توسط دیسک واکنشی که در تصویر 1-2 نشان داده شده است تنظیم می شود قسمت مالشی دیسک واکنشی مانند مایع روغنی عمل می کند که تولید فشاری برابر روی تمام سطوحی که با آن در تماس هستند می کند نتیجه این است که میزان ورودی فشار جوی با توجه به میزان فشار به جلوی تنظیم شده روی پیستون سیلندر اصلی تنظیم می شود .

خلایی که در مجرای مکش ورودی موتورهای اشتعال جرقه ای وجود دارند عموما ً برای فعال کردن بوسترها ( تقویت کننده ) کاملا ً کافی می باشد موتورهای دیزل به خاطر کافی نبودن خلاء مجرای مکش آنها که ناشی از عدم وجود یک گلوگاه می باشد نیاز به یک پمپ خلاء دیگر دارند پمپهای خلاء به سه شکل پرده ای ، دیافراگمی و پیستونی هستند پمپ خلاء های مدل پرده ای برای تولید خلاء مورد نیاز ، نیازمند موتور دیزل روغنی می باشند با توجه به میزان کمک دهی محدود ، معمولا ً در سیلندرهای اصلی که حداکثر حجم آنها 6/24 می باشند مورد استفاده قرار می گیرند .

شکل 1-1- سیلندر اصلی بوستر خلاء (Bendix )

1-2-2-a- تجزیه تقویت کننده خلائی مدل Mastervac :

ضریب تقویت کنندگی سیستم با توجه به ضریب نیروی فشار به جلو بر پیستون سیلندر اصلی با در نظر گرفتن فشاری که از طریق پدال بر تقویت کننده وارد می شود محاسبه می گردد .

(1-4)

که در فرمول فوق برابر است با نیروی تقویت کننده بر حسب N(lb)

تقویت کننده های خلائی میزان کارآیی سیستم ترمز را در ماشینهای سنگین حدود هشت تا نه برابر و در ماشینهای کوچکتر سه تا چهار برابر افزایش می دهند بدین معنی که مثلا ً نیروی وارد بر پدال هشت برابر می شود اگر چه این میزان تقویت کننده باعث کارآیی بالای ترمز با فشار اندکی که روی پدال وارد می آورد می شود اما در مواقعی که تقویت کننده عمل نکند معمولا ً راننده قادر به وارد آوردن فشار لازم روی پدال برای کاهش مورد نظر وسیله نقلیه نخواهد بود .]3[

خط فشار ترمز توسط معادله ای تقریبا ً مشابه معادله (1-1) محاسبه می شود فقط این محاسبه بر اساس ضریب تقویت کنندگی (B) می باشد .

ضریب تقویت کنندگی را می توان با ابعاد اولیه و پایه و نیروی فنرهایی که در mastervac پایه مورد استفاده قرار می گیرند (تصویر 1-2 ) محاسبه نمود .

شکل 1-2- یک دیافراگم متسروک Bendix

در این محاسبه قطر خارجی دیسک واکنشی را با و قطر پیستون واکنشی را با نشان می دهیم در محاسباتی که در زیرانجام شده است برای یک mastervac یک دیافراگم پیستون دار با قطر mm203 می باشد قطر دیسکهای واکنشی و پیستون واکنشی mm7/30 و mm18 (in729/0 و in21/1 ) می باشد .

که قطر نیروی فشار به جلو mm38/8 و Acm83/0 (in33/0) در نظر گرفته شده بود .

نیروی تقویت کننده برای یک خلاء مؤثر 928/7 (psi5/11 ) ]80% از حداکثر [ و بازدهی مکانیکی 95/0 عبارت است از :

نیروی مؤثر تقویت کننده به خاطر نیروی مقاوم فنرهای بازگرداننده پیستون دیافراگم کمتر می شود بنابراین :

که نیروی فنر بازگرداننده فرض شده است این محاسبات نشان می دهد که بخش تقویت کننده تولید نیروی فشار به جلوی هیدرولیکی به میزان (5101b)2269N می کند .

نیروی مقاومی که در برابر این نیروی فشار به جلو ایجاد می شود بعدها محاسبه خواهد شد دیسک واکنشی لاستیکی مانند یک مایع روغنی عمل می کند فشار دیسکی واکنشی برابراست با نیروی مؤثر تقویت کننده تقسیم بر تفاضل مساحت سطح مقطع دیسک واکنشی و پیستون واکنشی :

فشار کنترل بر هر سطحی که با دیسک واکنشی درتماس باشد نیروی مقاوم وارد می کند به دلیل آنکه نیروی پیستون واکنشی به قسمتی از دیسک واکنشی داده می شود نیروی پیستون واکنشی که برابر است با فشار واکنشی ضرب در مساحت پیستون واکنشی ، بنابراین ؛

نیروی پیستون واکنشی در مقابل نیروی فنرهای بازگرداننده پیستون واکنشی مقاومت می کند برای یک تقویت کنده خلاء با قطر نیروی فنر بازگرداننده تقریبا ً (151b)66.7N می باشد نتیجتا ً نیرویی که توسط پدال بر پیستون فشار به جلوی سیلندر اصلی وارد می شود برابر است با :

1298+66.1=1364N(290.7+15=305.71b)

مجموع نیروی وارده بر پیستون سیلندر اصلی و در نتیجه نیروی تولید شده از فشار خط ترمز برابر است با مجموع نیروی مؤثر بوستر و نیروی پیستون واکنشی یا

2277+1298=3575N(5102+290.7=800.91b)

در آخر نسبت تقویت کننده خلائی (B) توسط نسبت نیروی میله انگشتی وارده بر پیستون سیلندر اصلی تقسیم بر نیروی پیستون واکنشی محاسبه می شود .

B=575 / 1298 = 2/75

[B=800/9/290/7=2/75]


بررسی خواص و کاربردهای PVC

به نظر می رسد بومن نخستین کشی بدول پلی وینیل کلریدرا در سال 1872 تولید و تکزارش کزو، براساس گزارش بومن وقتی وینیل کلریه در معرض نور خورشید قرار می گیرد جامعه سفید رنگی به دست می آید که گرانی ویژه‌ی آن 14D6 است و تا 13De نیز تجزیه نمی شود در سال 1929 پلیمر شدی گرمایی وینیل کلریه که با پروکسید آغاز شده بدو، توسط و یک هازرگزارش شد و در سالهای 1937 –
دسته بندی مواد و متالوژی
فرمت فایل doc
حجم فایل 16 کیلو بایت
تعداد صفحات فایل 20
بررسی خواص و کاربردهای PVC

فروشنده فایل

کد کاربری 8044

خواص و کاربردهای PVC

به نظر می رسد بومن نخستین کشی بدول پلی وینیل کلریدرا در سال 1872 تولید و تکزارش کزو، براساس گزارش بومن وقتی وینیل کلریه در معرض نور خورشید قرار می گیرد جامعه سفید رنگی به دست می آید که گرانی ویژه‌ی آن 1.4D6 است و تا 13De نیز تجزیه نمی شود. در سال 1929 پلیمر شدی گرمایی وینیل کلریه که با پروکسید آغاز شده بدو، توسط و یک هازرگزارش شد و در سالهای 1937 – 1939 تولید انبوه آن صورت گرفت.

هر چند که وینیل کلر ید گازی با نقطه جوش 1400 است، اما در سال های 40 تا cْ 60 فشار اضافی آن در ظروف آیینه‌ی شده مشکلی ایجاد نمی کند. با وجود این هنگام کار وریک سیستم ثبت باید به وقت عمل کرد. تولید تجاری پلی وینیل کریه (PVC) و کد پلیمرهای آن بازنگری شده و مهم عمده‌ی رزین های PVC حدود 20%) در ایالات متحده‌ی آمریکا با روش پلیمر رمی تعلیفی، حدود 20% با روش های امولسیونی و تنها مقدار کمی از پلیمرهای ویژه در محلول ساخته می شوند.

اندازه‌ی امولسیونی و تنها مقدار کمی از پلیمرهای ویژه در محلول ساخته می شوند.

اندازه‌ی ذرات رزین های تعلیقی در مقایسه با نوع امولسیونی بزرگتر است (50 تا 500 میگروی در مقیاسه با D.1 تا 1.D میکروی) و معمولا به گونه ای طراحی می شود تا سطحی متخلخل و کنگره ای داشته باشند در نتیجه میزان جذب نرم کننده بر روی آنها برای تشکیل مخلوط های خشک در عملیات متفاوت روزی رانی و نورد کاری افزایش می یابد یا برعکس ذرات رزین امولسیون معمولا کره های سختی هستند که سطح آنها دست کم دارای قسمتی از امولسیون کننده‌ی موجود و در فرآیند پلیمر شدی است. چنین رزین ها یی را می توان در نرم کننده ها پخش کرد و شل های پلاستیکی یا خمیرهایی بدست آوردة سپس با گرم کردن آنها ترکیب رزین – نرم کننده حالت ژل پیدا کرده و شرایط نهایی خود را به دست می آورد.

PVC در منوم خود حل نمی شود و لذا در پلیمر شدن تعلیقی یا توده ای، PVC به محض تشکیل رسوب می کند و از این جهت شبیه آکریلونیتریل است هر چند پلیمر شدن امولسیونی وینیل کلریه، بسیاری از ویژگی های سیستم های امولسیونی را مانند آغاز گر انحلال پذیر در آب، تشکیل شیرابه پلیمر) داراست اما در ب رخی از جنبه های مهم از لحاظ نظری و از لحاظ آنچه که در سیستم های امولسیونی ضمن پلیمر انحلال پذیر در منوم مشاهده می شود با آن تفاوت دارد. به هر حال حضور پلیمر رسوب شده در سیستم های توده ای ( یا تعلیقی) و امولسیون، موجب افزایش سرعت پلیمر شدن مندم باقیمانده می شود و احتمالاً به این علت است که رادیکال ها در سطح جامد به وام افتاده و در نتیجه از بعضی واکنش های پایانی معمولی دور می مانند همچنین انتقال زنجیر به منوم به میزان نسبتاً زیادی رخ می دهد یا در نتیجه بر خلاف آستیری و قدیل متاکریلات، وزن ملکولی،بیشتر تحت تأثیر غلظت منومر است تا تغییر غلظت کاتالیزور استیرن و متیل متاکلریلات بیشتر از سینتیک پلیمر شدن رادیکالی پیروی می کنند، اعتقاد بر این است که انتقال به منموگروه انتهای سیر نشده ای ایجاد می کند که در اثر فعالسازی اکلیلی کلر موجب بروز بعضی ناپایداریهای گرمایی در PVC می شود. ( شکل ص 222)

کلرید نوع سوم که از شاخه ای شدن زنجیر اصلی ناشی می شود نیز ممکن است به بروز ناپایداری گرمایی کمک کند. در این حالت با حذف پی در پی HCL، سیستم وی انتهای مزرودچ ایجاد می شود و هنگامی که توان پیوندهای دوگانه به هفت برسد علائم تخریب PVC ظاهر می شود تا به صورت رنگهای زرد- قهوه ای- سیاه بروز می کند. روشن است که کلریدها ( یا هیدروژنهای اکیلی نوع سوم، نقاطی برای آغاز حذف گرمای Hcl هستند و اگر در نظر بگیریم که تعداد زیادی ساختار معمولی سر به دم در PVC وجود دارد آنگاه حذف هر Hd یک سیستم اکیلی دیگر ایجاد می کند. سیستم های پایدار کننده‌ی بسیاری برای مبارزه با تخریب PVC وجود دارند که پر مصرف ترین آنها صابون های فلزی سنگین ( مانند بارم و کادمیم اکتوئات) و نمک های سرب یا ترکیبات قلع به ویژه‌ دی اکلیل قلع دارای اتصالات SnS ( ماند (BuSn[SCHCOCH هستند. این ترکیبات قلع از نوع اعلا بوده و بیشترین موارد مصرف خود را در PVC سخت ( بدون نرم کننده) یافته اند در PVC سخت شامل تخریب بسیار حاد است پلیمر شدن تعلیقی وینیل کلرید

به یک بطری نوشابه یک چارکی 200nl آب مقطر هوازدایی شده ، 0.3 گرم قدیل سلولز به عنوان عامل معلق ساز و 0.3 گرم لاروفیل پرکسید اضافه کنید. این مواد را منجمد کروه و با نیتروژن برویید. وینیل کلرید مایع به مقدار اضافی ( حدود 105 گرم) را از درون استوانه‌ی حاوی پتاسیم هیدروکسید که نقش تغییر کننده دارد، بگذرانید و درون استوانه درجی که با یخ خشک خنک شده و در چگالنده یخ خشک قرار دارد، جمع آوری کنید همه در 115 ml از آن را جمع آوری کرده و به محتوای بطری که به دمای اتفاق رسیده است، بیفزایید هنگامی که مقدار اضافی وینیل کلرید تقطیر شد (100گرم از آن در ظرف باقی ماند) در بطری را باورپوش سوراخدار فولادی، درپوش غشایی نئوپری و لایه‌ی وردنی نازک پلی اتیلن آیتیه‌ی کنید محتوای بطری را در 50cc به مدت 24 ساعت به هم بزنید احتیاط :‌در این دما بطری که دارای فشار 80-90p.si است، باید از حفاظ خوبی برخوردار باشد). پس از خنک شدن بطری، با تعبیه یک سوراخ در غشای لاستیکی درپوش به کمک سوزیر تزریقات، فشار باقیمانده را آزاد سازید. ذرات درشت پلی ویتیل کلرید را روی صافی جمع کنید و در یک مخلوط کن با شسته و در دمای cc 50 در خلأ خشک کنید. با این روش باید 80 گرم پلیمر با گرانروی درونی حدود 1.0 (0.5 گرم در 100 ml سیکل مگزاندن، 30cc به دست آورید.

پلیمر شمش امولسینی وینیل کلرید

یک بطری نوشابه کوچک ( با گنجایش حدود 220 ml) را با فشار نیتروژن پاکسازی کرده و در آن 0.25 گرم پتاسییم پرسولفات و 85 ml محلول آبی 0.5 درصد یک شوینده آنیونی مانند سدیم لاریل سولفات ( مانند دوپونل (C بریزید محلول آبی را با استفاده از آب هوازدایی شده تهیه کنید. ( برای هوازدایی آب) در آن نیتروژن وارد کنید یا آن را بجوشانید و در فضای نیتروژن یا کربن دی اکسید یعنی ا فزایش یخ خشک خنک کنید). با حفظ فضای نیتروژن، محتویات بطری در یخ خشک منجمد می شود و مانند آزمایش قبل 27 تا 29 گرم وینیل کلرید مایع به محتویات بطری بیفزایید اجازه دهید منومر تبخیر شود آنجا که تنها 25 گرم از آن در بطری باقی بماند یا سپس در بطری را بوسیله‌ی درپوش غشایی تئوپری و درپوش تاجی سوراخدار آببندی کنید. اگر مانند این مورد نمی خواهید چیز دیگری به بطری اضافه کنید، توصیه‌ می شود یک فیلم نازک پلی اتیلن را در زیر درپوش قرار دهید تا از ورود هرگونه آلودگی به سیستم جلوگیری شود.

بطری را در دمای 50cc به مدت 5 تا 7 ساعت بچرخانید یا هم بزنید یا در نتیجه ؟؟ و آبی رنگ بدست می آید پس از خنک کردن و خارج کردن گازی که می تواند تنها مقدار کمی از منومر باقیمانده باشد با ا فزودن 50ml محلول غلیظ سدیم کلرید، امولسیون را لخته کنید. پلیمر را صاف کنید و در بار با آب و یکبار با متانول بشویید و بعد در دمای 50cc در خلا خشک کنید میزان تبدیل منومر 90% یا بیشتر بوده و گرانروی درونی پلیمر ( درسیکلوهگزاندی، 0.5 گرم پلیمر به ازای 100ml حلال 30cc) حدود 0.9 1.0 است علاوه بر لخته ای شدن که هنگام صاف کروی مشکلاتی به همراه وارد شیرابه را میتوانید آنقدر تبخیر کنید تا کاملاً خشک شود و به همان صورت استفاده کنید. این عمل باروش تجارتی معمول که همانا خشک کرون افشانه ای شیرابه های PVC است، مطابقت وارده در این حالت عامل امولسیون ساز، روی سطح وزات ریز مجزا وجود دارد. حضور صابون موجب پایداری گرمایی کمتر و خواص الکتریکی ضعیفتر PVC امولسیونی، در مقایسه با PVC تعلیقی می شود.

معرف وفااکلا تأثیر انواع عوامل فعال سازی بر پلیمر شدن امولسیون ویتیل کلرید را مطالعه و بررسی کردن آنها سرعت پلیمر شدت تبدیل و خواص پلیمر را به ساختار امولسیون ساز ارتباط فراونده امولسیدی سازی که وریتال اخیر مورد استفاده قرار گرفت عموماً مؤثرترین نوع آن است، بیش از نیمی از تولید PVC، برای ایجاد انعطاف پذیری، در ترکیب با نرم کننده ها مصرف می شود. بسته به نوع و مقدار نرم کننده‌ی به کار رفته، کارایی های مکانیکی متعددی حاصل می گردد. نرم کننده های معمولا نوعی پلی استرقسمت مهمی از علوم و تکنولوژی پلیمر را تشکیل می دهند. تهیه ورقه PVC انعطاف پذیر و شفاف

صد گرم PVC معمولی چند منظوره با وزن ملکولی بالا از درون ظرف اختلاط مناسبی بریزید چهل و پنج گرم دی اکتیل فتالات، 5 گرم روغن سویای اپوکسید شده مانند ترونکلس 2-E54 گرم پایدار کننده‌ی باریم تعمیم مانند مارک ll از شرکت شیمیایی آرگوس) را به زرین بیفزایید، این مواد را تا آنجا که از نظر چسبندگی مانند ماسه خیس خورده شوند، به هم بزنید و مخلوط کنید. این ترکیب را روی آسیاب دو غلتکی ویژه‌ی کار با پلاستیک ها با ابعاد غلتک 16inx12in بریزید. دمای غلتک ها باید 35 of وفاصله‌ی بین آنها 0.03 in باشد. ترکیب را به مدت 5 دقیقه و در حالت روان مخلوط کرده و سپس به صورت ورقه از دستگاه خارج کنید و بگذارید تا سرد شود ورقه های تجاری PVC با استفاده از PVC چند منظوره و بوسیله‌ی غلتک رانهایی چهار تایی و روزی ران های ویژه‌ی کار با پلاستیکها تهیه می شوند.

روزی ران های ویژه‌ی کار با پلاستیکها تهیه می شوند.

پیرایش های معینی که بر روی کوپلمرهای PVC صورت گرفته است، در مقایسه با مهمترین پیرایش های صورت گرفته بر روی وینیل استات از اهمیت تجاری بیشتری برخوردار است مزیت کوپلمرهای PVC در مقایسه با جور- پلیمرهای آن، کارایی فوق العاده در زمینه‌ی کابردهای ویژه ای مانند ساخت کفپوش و صفحه های گرامافون است.

تهیه پلی ویتیل کلرید تیلورپذیر

یک بالن یادی زرین 2 لیتری چهار دهانه را به ؟؟، بازولتی یخ خشک، ورودی نیتروژن دماسنج قیمت چکاننده برای افزودن کاتالیزور معجزه کننده ظرف را با نتیروژن ، در حدود یک ساعت کاملاً پاکسازی کرده و در یخ خشک – متانول تا cْ 40- مروکینیه، پس از خارچ کروی باز دارنده‌ی فنول از منومر وینیل کلرید توسط تقطیر با عبور از جاذب مناسب ( مانند دانه های (KON، 800 گرم از آن در واکنشگاه متراکم ( مایع) بکنید. 20 گرم از محلول 50% تری بوتیل بورای در هگزای را طی 5 دقیقه اضافه کرده و سپس 1.5 گرم محلول 1% هیدروژن پروکسید در متانول را در مدت 4 ساعت به صورت قطره قطره بیفزایید ( توجه : اکلیل بورانی به دقت جابجا کنید زیرا در تماس با هوا آتش می گیرد) بعد از گذشت 30 دقیقه دیگر 3 هیردوکسیدی در 50ml متانول را به منظور غیر فعال کروی کاتالیزور باقیمانده اضافه کنید.

صبر کنید مخلوط تا دمای اتاق گرم شود و وینیل کلرید واکنش نداده تقطیر خارج گردد با افزودن متانول، تا آنجا که جایگزین منومر مایع شود پلیمر را به حالت دوغاب نگهدارید سرانجام پلیمر را صاف کردند آن را به کمک متانول جوشان در استخراج کننده و به مدت 6 ساعت استخراج کنید؛ سپس آن را به مدت یک شب در فضای نیتروژن در آوی خلأ در دمای cْ 60 خشک کنید حدود 160 گرم محصول با گرانروی درونی حدود 1.4 در سیکلوهگزاندی 0.21 به ازای 100ml در cْ 25 )‌بدست می آید.


بررسی کاربرد GPS

بشر از گذشته های دور برای گم نکردن مسیر خود در سفرها به دنبال علامت و نشانه‌هایی از قبیل خورشید و ستاره ها و غیره بوده است
دسته بندی نقشه برداری
فرمت فایل doc
حجم فایل 37 کیلو بایت
تعداد صفحات فایل 61
بررسی کاربرد GPS

فروشنده فایل

کد کاربری 8044

کاربرد GPS
فصل اول

مقدمه

بشر از گذشته های دور برای گم نکردن مسیر خود در سفرها به دنبال علامت و نشانه‌هایی از قبیل خورشید و ستاره ها و غیره بوده است.

که با رشد تکنولوژی، با اختراع هواپیماها و کشتی های اقیانوس پیما و موشکهای برد کوتاه و برد بلند و سایر ادوات دیگر وسایل قدیمی حتی قطب نما نیز دیگر برای این کار مناسب نبود. از این رو یکی از راههای تعیین مسیر و موقعیت مکانی استفاده از داده های ماهواره های GPS می باشد. این سیستم در تمام طول شبانه روز و تحت تمام شرایط آب وهوایی در خدمت کاربران واقع در تمام نقاط سطح کره زمین می باشد. از آنجا که گیرنده های GPS به صورت پسیو کار می کنند هیچ محدودیتی از نظر تعداد کاربران ندارند. GPS در هر نقطه جهان و در هر زمان به سه پرسش زمان- مکان و سرعت پاسخ دقیق و ارزان می دهد. برای انجام این عمل ماهواره ها همواره مشغول ارسال سیگنالهایی شامل کدهای فاصله سنجی و نیز پیام ناوبری برای کاربران هستند. کدهای فاصله سنجی گیرنده‌های GPS را قادر می سازد تا زمان انتشار سیگنال را اندازه بگیرد و بدین وسیله با توجه به معلوم بودن سرعت انتشار امواج الکترومغناطیسی فاصله بین کاربر تا ماهواره ها معلوم می شود. پیام داده های ناوبری گیرنده را قادر می سازد تا مکان هر کدام از ماهواره‌ها را در لحظه ارسال سیگنال محاسبه کند. سپس گیرنده با استفاده از این اطلاعات موقعیت خود را بدست می آورد.


فصل دوم

سیستمهای ناوبری

2-1- تعریف ناوبری (Navigation)

به طور خلاصه می توان گفت هدف از ناوبری یک هواپیمای بدون سرنشین هدایت هواپیما از یک نقطه مبدا به یک نقطه مقصد است به منظور هدایت هواپیما، خلبان در ایستگاه زمینی نیاز به اطلاعات مختلفی دارد، از جمله جهت هواپیما نسبت به شمال جغرافیایی، فاصله تا مقصد، طول و عرض جغرافیایی و زمان رسیدن به مقصد.

به منظور دستیابی به این اطلاعات با کمترین خطا چاره ای جز طراحی یک Link رادیویی وجود ندارد. در قسمت بعد انواع سیستمهای رادیویی از حدوداً جنگ جهانی دوم تا این اواخر که بشر آنها را طراحی کرده آورده شده است.

2-2- انواع سیستم های ناوبری رادیویی

2-2-1- OMEGA

این سیستم ناوبری با برد بلند می باشد که از تکنیکی موسوم به هیپربولیک (Hyperbolic) جهت تعیین مختصات هواپیما استفاده می شود. این سیستم براساس اندازه گیری تغییرات فاز روی فرکانس کار می کند فرکانس کار این سیستم
10-14KHZ می باشد و بعد از جنگ جهانی دوم هم پدید آمده است. به خاطر این که روی فرکانس پایین کار می کند تمام نقاط کور یا چاله های زمینی را پوشش می دهد. و دارای هشت ایستگاه فرستنده بر روی زمین می باشد ابتدا مصرف نظامی داشته و سپس مصارف تجاری آن نیز شروع شده است.

آخرین اطلاعات حاکی از آن است که امروزه نیز این سیستم ناوبری بصورت تمام وقت کار خود را ادامه می دهد.

اطلاعاتی که این سیستم برای خلبان فراهم می آورد عبارتند از:

1- تعیین موقعیت هواپیما به صورت مختصات طول و عرض جغرافیایی.

2- زاویه و مسافت هواپیما تا ده مقصد مختلف (Way Point)

3- مسیر واقعی پرواز (Cross Track)

4- زمان رسیدن به مقصد و سرعت هواپیما نسبت به زمین

5- اطلاعات مربوط به سمت و سرعت باد در پرواز.

2-2-2- DECGA

این سیستم نیز از تکنیک هیپربولیک (Hyperbolic) جهت تعیین مختصات هواپیما یا کشتی استفاده می کند.

ایستگاههای DECGA روی فرکانس 12-70 KHZ به صورت دائم کار می کنند ایستگاههای فرستنده زنجیروار آراسته شده اند که مرز زنجیر از یک ایستگاه اصلی (Master) با قابلیت عملکرد کنترلی و سه ایستگاه Slave که سیگنالهایشان با ایستگاه اصلی قفل فاز شده اند تشکیل شده است. این سیستم انگلیسی است و طی جنگ جهانی دوم به وجود آمده است. ابتدا جهت استفاده در کشتی ها و ناوهای جنگی طراحی و ساخته شده بود و بعدها مصارف هوایی نیز پیدا کرد.

اطلاعاتی که این سیستم در اختیار خلبان قرار می دهد عبارتند از:

1- تعیین موقعیت هواپیما به صورت مختصات طول و عرض جغرافیایی.

2- زاویه و مسافت هواپیما تا مقصد.

3- زمان رسیدن به مقصد و سرعت هواپیما نسبت به زمین.

2-2-3- LORAN : ( Lony ranye Navigation )

این سیستم دارای ایستگاههای اصلی ( Mastr ) و ثانویه ( Secondary )

است که پالسهایی با دوره تکرار 25 یا 30 در ثانیه ارسال می کنند که طول این پالسها 40 میکر ثانیه است گیرنده با دریافت این پالسها از دو ایستگاه ، موقعیت مکانی خود را به دست می آورد.

این سیستم روی فرکانس 10-14 KHZ کار می کند و تقریبا پوشش جهانی دارد.

2-2-4- ANF ( Automatic Diretion Finder )

در این روش ایستگاههای رادیویی وجود دارند که فرکانس امواج آنها 200 تا 2000 کیلو هرتز می باشد. گیرنده با گرفتن این امواج جهت آن را ؟ می دهد و انسان را به سمت آن ایستگاه هدایت می کند.

2-2-5- VOR ( VHF Omni Ranye Beo Con )

فرستنده این سیستم روی فرکانس 112 تا 9/117 مگاهرتز کار می کند. و دقت این سیستم از ADF بیشتر است. گیرنده VOR جهت خود را تا فرستنده نسبت به شمال مغناطیسی پیدا می کند.

2-2-6-GPS ( Positioniog System Global )

سیستم GPS یک سیستم تعیین موقعیت ماهواره ایی است که اطلاعات دقیق پیوسته و جهانی و سه بعدی از موقعیت و سرعت را در اختیار کاربرانی که گیرنده GPS مناسبی در اختیار داشته باشند قرار می دهد. بخش فضایی GPS شامل 24 ماهواره است که در 6 صفحه موازی با 4 ماهواره در هر مدار قرار گرفته اند.

در فصل چهارم این سمینار راجع به سیستم GPS و مبحث خطاها مفصل پرداخته خواهد شد.

2-3- محاسن ناوبری GPS به سیستمهای دیگر.

سیستم GPS به دلیل داشتن محاسن فوق العاده ای از قبیل دقت زیاد در مکان یابی و پوشش جهانی و قابلیت تعیین سرعت در سه محور و داشتن مینیمم خطای ممکن و غیره ، باعث گشته تا انتخاب اول برای هواپیماهای با سرنشین و بدون سرنشین و یا موشکهای دور برد باشد و حتی با گسترش امکانات این سیستم برای کاربران بسیاری از سیستم های ناوبری رادیویی که توضیح داده شد عملا از رده خارج شوند.


2-4- نگاهی به کاربردهای GPS :

2-4-1- کاربرد GPS/INS در هدایت هواپیماها:

در طول پرواز به خاطر عوامل و یا عوامل مختلف دیگر ممکن است ارتباط گیرنده GPS با ماهواره ها قطع گردد و یا در کار سیستم GPS اختلال ایجاد شود در این صورت لازم است جهت جلوگیری از بروز حادثه و خارج شدن هواپیما از کنترل ، سیستم ناوبری کمکی وجود داشته باشد تا هدایت هواپیما را به عهده بگیرد و این کار تا جایی صورت گیرد که هواپیما بدون مشکلی به مبدأ بازگردد . این سیستم ناوبری کمکی می تواند INS ( Intertial Navigation System ) باشد که در این سیستم از سنسورهای و جایروها و شتاب سنجهای داخلی جهت ناوبری اتوماتیک استفاده می کنند.

پس از تشخیص عدم عملکرد صحیح GPS توسط واحد کنترلی، ناوبری از طریق قطب نما انجام می گیرد و واحد کنترلی مسیر پروازی را از روی اطلاعات دریافتی از قطب نما پیدا می کند. این کار بدین صورت انجام می کیرد که در لحظه ای که GPS قطع شد نرم افزار آخرین اطلاعات و ریتکال جایرو سایر سنسورها را دارد و با توجه به اینکه آخرین اطلاعات موقعیت هواپیما در لحظه قطع GPS در حافظه قرار دارد و اطلاعات موقعیت Way Point نیز در حافظه قرار داده شده و سرعت هواپیما نیز موجود می باشد زمان لازم جهت رسیدن به اولین Way Point بدست می آید. در این زمان نرم افزار هواپیما را آنقدر اصلاح می کند تا هدینگ هواپیما در راستای مناسب قرار بگیرد و به اندازة زمان محاسبه شده در همین جهت ادامه مسیر دهد تا به اولین Way Point تا زمانی که GPS مجددا شروع به کار نماید انجام می گیرد و اگر در این مدت GPS شروع به کار نمود اطلاعات جدید دریافت شده و انحرافات بوجود آمده تا مسیر پروازی تصحیح می شود تا هواپیما بتواند مأموریت خود را انجام دهد در صورتی که هواپیما به اولین W ay Point برسدو GPS همچنان از عملکرد صحیح بازمانده باشد. هواپیما عمل Homming را انجام می دهد و این بدین معنی است که هواپیما در همان ارتفاع و به وسیله قطب نما به سمت مبدأ تغییر مسیر داده و به ایستگاه کنترل زمینی باز می گردد. لازم به توضیح است اگر در طی پرواز Homming ، GPS شروع به کار نماید هواپیما از حالت Homming خارج نشده و به پرواز در مسیر خود برای رسیدن به مبدأ ادامه می دهد.

از آنجاییکه INS بر اساس سنجش شتاب در سه راستای مختصاتی و سپس انتگرال گیری مجدد برای محاسبه موقعیت کار می کند. به دلیل این انتگرال گیری ها خطای INS جمع شونده و افزایش یابنده است. تنها می توان با به کار بردن جایروها و شتاب سنج های دقیق تر از نرخ این افزایش کاست ولی مسلما این روش به هزینة زیادمنجر می شود. این در حالی است که خطای GPS تا حد زیادی اتفاقی است. بنابراین ب ترکیب مناسب این دوسیستم می توان معایب هر دو را تا حد زیادی کاهش داد.

امروزه ناوبری هواپیماها با ترکیبی از INS و GPS انجام می شود و بدین صورت مقدارهای ثابت انتگرال گیری INS به طور ادواری به کمک نتایج GPS تصحیح می شود. بنابراین با هر بار تصحیح ، خطای جمع شده INS تا آن لحظه صفر می شود .

به دلیل نرخ بالای تصحیح ( نوعا ) هیچ نیازی به INS های دقیق و گران نیست و بنابراین می توان از یک INS معمولی و ارزان برای ترکیب با GPS استفاده کرد. این نوع ناوبری مخصوصا برای پروازهای طولانی که در آنها قسمت اعظم مسیر خارج از پوشش را دارهای زمینی انجام می شود که کارایی عالی دارد. به طور مثال استفاده از GPS در ناوبری هواپیماهای اقیانوس پیما تا 10 % از هزینة سوخت آنها می کاهد.

2-4-2 ) کاربرد GPS در هدایت دریایی:

در کشتی ها به دلیل سرعت نسبتا پایین حساسیتی نسبت به پیوسته نبودن نتایج GPS در محور زمان وجود ندارد. علاوه براین به دلیل فقدان سوانح ؟ ، مشکلات چند مسیر شدن سینگنال ماهواره و نیز ماسک شدن آن وجود ندارد. پس GPS می تواند به تنهایی ناوبری کشتی ها را انجام دهد. در این صورت باز هم در مسیرهای طولانی و اقیانوسی کشتی قادر خواهد بود مسیر خود را به دقت بپیماند و در زمان مسافرت و سوخت صرفه جویی کند.

2-4- 3- کاربرد GPS در تعیین زوایای وضعیتی وسایل نقلیه:

با قراردادن چند گیرنده GPS در نقاط مختلف یک وسیله نقلیه مثل کشتی ، می‌توان در هر لحظه زوایه های بین محل این گیرنده ها را حساب کرد.


2- 4- 4- تعیین موقعیت ماهواره های کوچک با ارتفاع پایین

دیگر برای مکان یابی این ماهواره ها نیازی به روشهای گران و پردردسر ردیابی و تعقیب زمینی نیست . این ماهواره ها می توانند ماهواره های جاسوسی، هواشناسی یا نقشه برداری باشند که نتایج آنها بدون معلوم بودن مکان ماهواره ها در لحظه تهیه اطلاعات ارزش چندانی ندارد. و تفسیر صحیح نتایج آنها ، منوط به تطبیق آنها برنقشه های جغرافیایی مسطح زمین است. این ماهواره های می توانند از GPS برای تعیین و ثبت محل دقیق گرفتن هر کدام از عکس ها استفاده کنند.

2-4-5- کاربرد در نقشه برداری:

یکی از کاربردهای مهم غیر نظامی GPS استفاده از‌ آن در نقشه برداری است.

در سد سازی در معدن کاوی و راه سازی و غیره GPS می تواند هزینه های اجرایی طرح را تا حد زیادی کاهش دهد. GPS با ایفای نقش در تهیه نقشه های بسیار دقیق برای سیستم های اطلاعات جغرافیایی ، سهم مهمی در مینیمم شدن طول جاده ها و مسیرها و تعیین دقیق محل معدن ها و غیره دارد.

علت استقبال از GPS در نقشه برداری این است که GPS بر خلاف سیستم های قبلی برای مکان یابی به جای روش داپلر سنجی از روش تداخل ؟ که بسیار دقیق تر است استفاده می کند. GPS در تهیه نقشه های هوایی و جایابی دقیق عکس های هوایی نقش مهمی را ایفا می کند.


2- 4-6- کاربرد در مصارف نظامی:

بیشترین کاربرد GPS در مصارف نظامی است . به کمک GPS دیگر هیچ دسته نظامی در هیچ محیط جغرافیایی ناآشنا گم نمی شود. در برخی از گیرنده های GPS ، می توان مسیر عملیاتی یک واحد را از قبل در حافظه دستگاه وارد کرده و حداکثر انحراف مجاز از مسیر را نیز مشخص کرد. در این صورت خروج از دالان مجاز، هشدار می دهد. با این روش می توان محل میدان های مین شناسایی شده را از قبل در حافظه دستگاه وارد کرد تا از هر گونه اشتباه مرگبار جلوگیری شود. علاوه بر واحدهای زمینی، از موشکهای بالستیک گرفته تا هواپیماهای بدون سرنشین و تا بمبهای هوشمند، اهداف خود را با GPS سریع تر ، دقیق تر و ارزان تر پیدا می کنند.

2-4-7- کاربرد در مدیریت و کنترل ناوگانها :

این ناوگان می تواند گشتی های اقیانوس پیمای یک شرکت حمل و نقل بین المللی، کامیونهای یک شرکت باربری زمینی، قطارها ، شبکه تاکسیرانی شهری، خودروهای گشت پلیس ، آمبولانس ها یا خودروهای آتش نشانی باشد. کافی است واحد متحرک را به یک گیرنده GPS و یک کامپیوتر که در صفحه نمایش خود، مجموعه راههای ممکن را نشان می دهد مجهز کرد و سپس تمام واحدها را با یک شبکه داده به مرکز کنترل وصل کرد. در این صورت مرکز کنترل همواره شمایی که کامل از وضعیت و موقعیت و آرایش کلیه واحدها خواهد داشت. پیش بینی می شود در آینده نزدیک حتی خودروهای سواری هم به این تجهیزات مجهز شوند و بتوانند با هدایت صحیح توسط مرکزکنترل ترافیک، بهترین مسیر را در هر شرایطی انتخاب کنند. و یا با دزدیده شدن خودرو توسط این سیتم مکان اختفای آن را کشف کرد.

2-4-8- کاربرد های زیست محیطی:

به عنوان نمونه با بستن یک قلاده مجهز به GPS و یک فرستنده مناسب می توان مسیر مهاجرت دسته های پرندگان و سایر حیوانات را دقیقا و لحظه به لحظه پیگیری کرد. همچنین در اقیانوس شناسی از یک شناور کوچک مجهز به GPS و فرستنده ، جهت بررسی جریانهای آبی در مکانهای ناشناخته در میان اقیانوسها استفاده می شود.

فصل سوم: معرفی پهپاد به عنوان کار بر سیستم GPS.