فایل بای | FileBuy

مرجع خرید و دانلود گزارش کار آموزی ، گزارشکار آزمایشگاه ، مقاله ، تحقیق ، پروژه و پایان نامه های کلیه رشته های دانشگاهی

فایل بای | FileBuy

مرجع خرید و دانلود گزارش کار آموزی ، گزارشکار آزمایشگاه ، مقاله ، تحقیق ، پروژه و پایان نامه های کلیه رشته های دانشگاهی

دانلود تغذیه گاو

اثبات شده است که یک گاو در طی دوره شیرواری چربی بدن را با بازده بیشتری نسبت به دوره خشکی ذخیره می کند گاهاً یک گاو قبل از اینکه به نمرة وضعیت قابل قبولی برسد، باید خشک گردد از این رو یک مدیر باید گاوهای خشک را به منظور اضافه وزن و حصول نمرة وضعیت مطلوب تغذیه کند بدیهی است که یک برنامه تغذیه ای حساب شده همراه با بازدیدهای مکرر برای بالا رفتن وضعیت
دسته بندی دام و طیور
فرمت فایل doc
حجم فایل 17 کیلو بایت
تعداد صفحات فایل 10
دانلود تغذیه گاو

فروشنده فایل

کد کاربری 7169

یک راهنما برای تولید موفق، غذای مناسب برای گاو است. هزینه غذا بیشترین بهایی است که برای نگهداری گاو باید پرداخت. فهم مراحل هضم نشخوارکنندگان و غذای اصلی آن ها، نیازمند غذا دادن و مدیریت خوب است.

در سال شش زمان کلیدی وجود دارد که وضعیت بدن دام مورد ارزیابی قرار گیرد . این زمان ها عبارتند از: اواسط دوره خشکی، زایمان، و تقریبا 45، 90، 180،270 روز بعد از شروع شیرواری.

آنچه در زیر می آید به شرح اهداف معین در خصوص وضعیت بدن دردوره خشکی می پردازد.

تغذیه گاو در دوران خشکی و تعادل کاتیون و آنیون در جیره گاو

دوره خشکی

نمرة ایده آل وضعیت بدن برای یک گاو خشک 5 و3 می باشد. برای حصول عملکرد و سلامتی مطلوب در مراحل اولیه شیرواری که درپی دورة خشکی می آید، وضعیت بدن باید حداقل 3 و حداکثر 4 باشد.

اثبات شده است که یک گاو در طی دوره شیرواری چربی بدن را با بازده بیشتری نسبت به دوره خشکی ذخیره می کند. گاهاً یک گاو قبل از اینکه به نمرة وضعیت قابل قبولی برسد، باید خشک گردد. از این رو یک مدیر باید گاوهای خشک را به منظور اضافه وزن و حصول نمرة وضعیت مطلوب تغذیه کند. بدیهی است که یک برنامه تغذیه ای حساب شده همراه با بازدیدهای مکرر برای بالا رفتن وضعیت بدن گاوهای خشک( البته بدون چاق شدن گاو) ضروری است.

یک دوره خشکی 8 تا 6 هفتگی برای گاوها، به طور قابل توجهی باعث افزایش تولید شیر در دوره های بعدی نسبت به زمانی که دورة خشکی داده نشود، می گردد. اساساً مدت طولانی تر دوره خشکی، کل تولید شیر را برای هر دو دوره شیردهی کاهش می دهد . دلایل مختلفی برای تشریح اثرات سودمند دوره خشکی از جمله نیاز به جایگزین کردن ذخایر مواد مغذی بدن برای و احتیاجات جهت ساختن بافت ترشحی در پستان پیشنهاد شده است. بیشتر نتایج پژوهشی نشان می دهند که ذخیره دوباره مواد مغذی در بافت ها با وجود این که مهم است. ولی احتمالاً دلیل اصلی برای اثرات سودمند دوره خشکی نیست. برای مثال وقتی فقط به نصف پستان دورة خشکی داده می شود، این نیمه پستان به طور قابل توجهی شیر بیشتری در شیردهی بعدی تولید می کند گاو خشک باید به اندازه کافی تغذیه شود تا در یک وضعیت خوبی باشد. ولی نه به اندازه ای که در زمان زایش چاق شود.


مطالعه و بررسی عیوب و محاسن راه اندازهای موتورهای الکتریکی

از آنجایی که امروزه راه اندازی موتورهای الکتریکی یکی از مسائل و دغدغه های بزرگ کارخانه های صنعتی و شرکت های تولیدی و نیز تولید کنندگان نیروی برق و شرکت های وابسته میباشد در این پروژه به بررسی برخی از این راه اندازها می پردازیم و محاسن و معایب آنها را مورد بررسی علمی قرار میدهیم
دسته بندی برق
فرمت فایل doc
حجم فایل 2289 کیلو بایت
تعداد صفحات فایل 114
مطالعه و بررسی عیوب و محاسن راه اندازهای موتورهای الکتریکی

فروشنده فایل

کد کاربری 8044

مقدمه:

از آنجایی که امروزه راه اندازی موتورهای الکتریکی یکی از مسائل و دغدغه های بزرگ کارخانه های صنعتی و شرکت های تولیدی و نیز تولید کنندگان نیروی برق و شرکت های وابسته میباشد در این پروژه به بررسی برخی از این راه اندازها می پردازیم و محاسن و معایب آنها را مورد بررسی علمی قرار میدهیم.

از دلایل اهمیت موضوع شوک های الکتریکی و مکانیکی شدیدی می باشد که در زمان راه اندازی به شبکه برق رسانی و موتور وارد و سبب استهلاک شدید دستگاه های موجود و بالا بردن هزینه های اقتصادی می شود . بنابراین استفاده از راه انداز های مناسب بخصوص در مورد موتورها با توان های بیش از چندین اسب بخار در کاهش هزینه های برق مصرفی و نیز هزینه های نگهداری و تعمیر تاثیر بسزایی دارد.

فهرست:

1 ) کلیات موتور آسنکرون سه فاز : ...................................................................1

1 - 1 ) ساختمان موتورهای القایی سه فاز :...................................................................2

1-1 - 1 ) استاتور : .................................................................................................2

1-1 - 2 ) رتور : .......................................................................................................3

1-1 -3 ) حلقه های لغزان : .....................................................................................4

1 - 1 -4 ) جاروبک ها : ...........................................................................................4

1 - 1- 5 ) یاتاقان و بدنه : ......................................................................................4

1 – 2 ) عملکرد موترهای القایی سه فاز : .......................................................................5

1 – 2 – 1 ) موتور ساکن .........................................................................................5

1 – 2 -2 ) مکانیزم تولید گشتاور در موتور القایی ( آسنکرون ) : ................9

1 – 2 – 3 ) موتور گردان : ....................................................................................14

1 – 2 – 4 ) موتور در شرایط ماندگار : .............................................................22

1 - 3 ) موتور فقس سنجابی : .......................................................................................25

2 ) انواع روشهای راه اندازی موتور القایی سه فاز: .....................................28

2 – 1 ) روش راه اندای مستقیم : ..................................................................................30

2 – 2 ) روش راه اندازی توسط افزایش مقاومت رتور : ..........................................31

2 – 2 – 1 ) موتورهای رتور سیم پیچی شده : ................................................31

2 – 2 – 2 ) Liquide starter : .........................................................................37

فهرست:

2 – 2 – 3 ) درایور راه اندای کرامی : .................................................................38

2 – 2 – 4 ) راه اندازی موتورهای قفس سنجابی با توجه

به جریان و مقاومت رتور : .............................................................40

الف – کلاس A : ................................................................................................40

ب – کلاس D : ...................................................................................................41

ج – کلاسهای C , B : .......................................................................................41

د – رتورهایی با میله های عمیق : .................................................................41

ه – موتورهای قفس سنجابی دوبل : ..............................................................42

2-3) انتخاب ولتاژ موتور :.............................................................................................43

2-3-1) راه اندازی موتور قفسه ای با کاهش ولتاژ استاتور :........................43

2-4 ) راه اندازی با استفاده از کلید ستاره مثلث : ....................................................46

2-5) روش کلاج گریز از مرکز :.....................................................................................49

2-6) پیک جریان حین راه اندازی :................................................................................50

2-7) دینامیک راه اندازی :..............................................................................................51

موتور با بار خالص : ...........................................................................................53

گرم شدن رتور : .....................................................................................................53

2-8) راه اندازی موتورهای بزرگ به کمک خازن :......................................................54

2-8-1) مشکل راه اندازی موتورهای القایی بزرگ : ........................................55

فهرست:

2-8-2) عملکرد یک سیستم راه اندازی خازنی :................................................56

3) راه اندازی تریستوری موتورهای القایی :..................................................57

مقدمه:...............................................................................................................................58

3-2 ( مدهای کنترل:.........................................................................................................62

3-2-1( کنترل راه اندازی:.....................................................................................63

3-2-2( کنترل شتاب راه اندازی:..........................................................................63

3-3) مشخصات راه اندازهای تریستوری:...................................................................67

3 -4( شرح مدارهای متداول راه اندازهای تریستوری:.............................................68

3- 5) مدار قدرت:...............................................................................................................68

3-5-1( معرفی تریستور:......................................................................................69

3-5-1-1) مدل دو ترانزیستوری تریستور:...............................................70

3-5-1-2) روش های روشن شدن تریستور:.............................................71

3-6) مدار فرمان:...............................................................................................................72

3-6-1) مدار آتش کننده:........................................................................................74

3-6-2 ) مدار تقویت کننده: ..................................................................................75

3-6-3) مزیت عمده راه اندازی موتور به شیوه تریستوری و

انتقال زاویه آتش:....................................................................................76

3-6-4 ) مدار خطای جریان:...................................................................................77

فهرست:

3-7) طراحی و بررسی مدارعملی و ساده راه انداز نرم موتور

آسنکرون (القایی):.................................................................................................77

3-7-1) کنترل:..........................................................................................................79

3-7-2) نوسانساز موج دندانه اره ای:................................................................84

3-7-3 ) کنترل زاویه آتش :..................................................................................86

3-7-4 ) مقایسه کننده:...........................................................................................88

3-7-5) ایزوله کننده مدار قدرت و مدار فرمان:................................................89

3-7-6) رلة اضافه ولتاژ و افت ولتاژ:.................................................................90

3-7-7) رلة اضافه جریان (Over Current) :.................................................92

3-8) نظام هماهنگ و :.....................................................................................93

3-8-1) لزوم استفاده از نظام ثابت:.............................................................95

3-8-2) توضیح دربارة PWM :.........................................................................97

3-8-3) مدارات اینورتر:......................................................................................100

3-8-4) رکتیفایرها:..............................................................................................102

3-9 ) مقایسه قیمت تمام شده انواع راه اندازها : .....................................................111

3-10) نتیجه : .................................................................................................................113

« بسم الله الرحمن الرحیم »

فصل اول :

« کلیات موتور آسنکرون سه فاز »

1 - 1 ) ساختمان موتورهای القایی سه فاز :

شکل ( 1-1 ) تصویر یک موتور القایی سه فاز و قطعات آن را نشان میدهد .

شکل ( 1-1)

1-1 - 1 ) استاتور :

هستۀ استاتور به صورت ورقه ورقه ( لایه لایه ) از جنس فولاد مرغوب ساخته می شوند و علت مورق بودن استاتور جلوگیری از جریان فوکو و تلفات ناشی از آن می باشد .

سطح داخلی استاتور حاوی شیارهای متعددی جهت سیم پیچ های سه فاز است .

شکل ( 2-1)

هر کلاف در دو شیار می نشیند و طول استوانه ها مقداری بیشتر از طول کلاف ها خواهند بود . سیم بندی استاتور به صورت مثلث و یا ستاره قابل تنظیم می باشد .

شکل ( 3-1)

1-1 - 2 ) رتور : هستۀ روتور نیز مورق ساخته شده ( لایه لایه ) و از جنس مواد فرو مغناطیسی مرغوب ساخته می شود سطح خارجی رتور همانند استاتور دارای شیارها یی است و هادی های رتور در آن جاسازی می شوند . رتور از نظر ساختمانی به دو نوع تقسیم می شوند :

1 – موتور سیم پیچی شده که درون شیارهای رتور میله های مسی یا آلومینیومی قرار میگیرد .

2 – موتور قفس سنجابی که درون شیارهای رتور میله های مسی یا آلومینیومی قرار می گیرد .

شکل ( 4-1)

باید دانست در رتور قفس سنجابی میله ها از دو سمت توسط حلقه های انتهایی به هم متصل یا به عبارت بهتر اتصال کوتاه شده اند . در رتور سیم پیچی شده در حقیقت یک اتصال کوتاه شده داریم .

1-1 -3 ) حلقه های لغزان :

کارخانه های سازنده سه پایۀ رتور را از درون به یکدیگر وصل کرده وهر سه پایانۀ دیگر را از ماشین خارج و به حلقه های لغزان بر روی محور رتور متصل می سازند .

شکل ( 5-1)

1 - 1 -4 ) جاروبک ها :

بر روی حلقه های لغزان جاروبک نصب شده که ساکن است و می توان از این طریق مقاومت رتور را تغییر داد .

1 - 1- 5 ) یاتاقان و بدنه :

شکل (6-1)

1 – 2 ) عملکرد موترهای القایی سه فاز :

شکل ( 7 – 1 ) یک موتور دو قطبی را نشان میدهد . در این دیاگرام فقط یک دسته هادی برای هر فاز نشان داده شده است . البته هر یک از اینها نشان دهنده یک سری سیم بندی در شیارهای مختلف است به طوریکه یک توزیع سینوسی از نیروی محرکه القایی در فاصله هوایی ایجاد شود می توان یک مدل الکتریکی برای موتورهای القایی ارائه داد .

شکل ( 7-1)

1 – 2 – 1 ) موتور ساکن :

اگر استاتور موتر شکل ( 7 – 1 ) بوسیلۀ یک منتبع سه فاز متقارن تحریک شود آنگاه یک میدان گردان در فاصلۀ هوایی ایجاد خواهد شد . این میدان گردان از هادی های رتور عبور کرده و در آنها ولتاژ القا می کند این ولتاژها سینوسی هستند و با هم اختلاف فاز دارند . بنابراین اگر موتور ساکن باشد به سادگی یک ترانسفورماتور عمل می کند . ممکن است فرض شود سیم بندی استاتور و رتور هر دو ستاره باشند بدون اینکه توجه به واقعیت آنها بشود . چون موتور شبیه به ترانسفور ماتور سه فاز عمل می کند می توانیم مدار معادل یک فاز آن را بکشیم .

شکل ( 8 – 1 ) مدار معادل تک فاز را نشان می دهد .

شکل (8-1)

فرض کنید سیم پیچ رتور مدار باز باشد و یک شبکه سه فاز متقارن استاتور را با فرکانس ws تغذیه کند . ولتاژ فاز آن برابر Va باشد . جریان متنجه Ia و دیگر جریان های منتجه در فازهای دیگر یک میدان گردان در فاصلۀ هوایی ایجاد می کنند که باعث ایجاد ولتاژ القایی Ema در فاز a می شود . مقداری فلوی پراکنده نیز هست که آن را به صورت lsدر مدار نشان می دهند که یک افت ولتاژ القایی در مدار ایجاد می کند . بعلاوه به دلیل وجود مقاومت سیم پیچ یک افت ولتاژ اهی نیز خواهیم داشت که در مدار به صورت مقاومت Rs نشان داده شده است .

هنگامی که رتور مدار باز باشد در ترانسفور ماتور ایده ال جریان نداریم بنابر این Ia همان جریان مغناطیس کنندگی Ima می باشد . میدان گردان ولتاژ القایی Ema را در فاز a ایجاد می کند ضمناً در اثر همین میدان گردان ولتاژ Ema نیز در رتور القا خواهد شد .

بنابر این :

(1-1)
اما به دلیل وجود زاویۀ بین استاتورور تور مطابق شکل بین ولتاژها اختلاف فاز به وجود خواهد آمد ولتاژهای القایی استاتورور تور در یک زمان به مقدار پیک نمی رسند بلکه زمانی به اندازۀ طول می کشد . بنابر این نسبت ولتاژهای استاتور ورتور مطابق رابطۀ زیر می باشد .

(2-1)
اگر با متعادل به رتور و صل شود و استاتور با شبکه سه فاز متعادل تغذیه شود آنگاه جریان های متعادل با فرکانس Wr = Ws در رتور خواهیم داشت و معادلات آنها به صورت زیر می باشد .

(3-1)

این جریان ها باعث ایجاد یک میدان گردان می شوند .

(4-1)

اما چون Wr = Ws می باشد .

(5-1)

(6-1)
در یک ترانسفور ماتور تک فاز نیروی محرکۀ مغناطیسی تولید شده توسط ثانویه با نیروی محرکۀ مغناطییبی مؤلفۀ بار اولیه I2 مساوی و مخالف می باشد .

(7-1)

در یک موتور سه فاز ساکن مانند یک ترانسفورماتور سه فاز عمل می شود . نیروی محرکۀ مغناطیسی که توسط جریان های فاز Ic , Ib , Ia جریان های استاتور از زابطۀ زیر محاسبه می شوند .

(8-1)

و همچنین :

(9-1)

میدان گردانی با معادلۀ زیر در فاصلۀ هوایی ایجاد می شود .

(10-1)

(11-1)

اگر میدانهای گردان در رابطۀ ( 10-1 ) و ( 5-1 ) با هم برابر باشند .

(12-1)
(13-1)

این حالت در شکل ( 9 - 1 ) نشان داده شده است . جهت جریان ها در سیم پیچ ها ، در یک لحظۀ بخصوص مشخص شده است .

شکل (9-1)

ولتاژ القایی هادی های استاتورو رتور در یک جهت می باشند این مسئله قابل پیش بینی بود . چون آنها توسط یک میدان گردان ایجاد شده اند اما همانطور که در شکل ( 9 - 1 )

مشخص است جریانهای استاتور ورتور مخالف هم می باشند .

برای راحتی جریانهای فاز iA , ia در معادلات ( 3-1 ) و ( 9-1 ) نسبت به فاز تعریف می شود .

(14-1)

(15-1)
بنابراین :

(16-1)
با استفاده از معادلات ( 12-1 ) و ( 13-1 ) و ( 16-1 ) داریم:

(17-1)
معادلۀ ( 17-1 ) نسبت جریان ترانسفور ماتور ایده آل شکل ( 8-1 ) را نشان می دهد . نسبت امپدانس ترانسفورماتور ایده آل با استفاده از رابطه ( 17-1 ) و ( 2-1 ) بدست می آید .

(18-1)

قدرت ورودی به یک فاز ترانسفورماتور ایده آل در اولیه با قدرت خروجی آن فاز در ثانویه برابر خواهد بود .

(19-1)

1 – 2 -2 ) مکانیزم تولید گشتاور در موتور القایی ( آسنکرون ) :

محاسبات قبل توانایی آن را می د هد که عملکرد موتر آسنکرون را پیشگویی کنیم . با یک دید فیزیکی به مسئله یادگیری ما افزایش می یابد . شباهتها و تفاوت ها را با ماشین های الکتریکی دیگر بهت ر تشخیص می دهیم . یک مدل ساده که در آن مقاومت و راکتانس پراکندگی استاتور صرف نظر شده است . در شکل ( 10-1 ) نشان داده شد ه است .

شکل نشان دهندۀ حالت یک فاز می باشد .

شکل (10-1)

دو فاز دیگر به صورتی که t متغییرها اختلاف فاز دارند و سیفت پیدا می کنند قابل کشیدن هستند ( نسبت به a در استاتور و A در رتور ) . جریانهای IA , IB , IC در رتور تولید یک میدان گردان می کنند که درفاصلۀ هوایی می چرخد .

جریان نیز تولید میدان گردان می کنند که مطابق با قانون آمپر این دو میدان باید برابر و مخالف یکدیگر باشند . در یک ماشین ایده آل نیروی محرکۀ منتجه صفر است .

(20-1)

ولی در یک ماشین واقعی دو میدان یکدیگر را خنثی نمی کنند . منتجۀ دو میدان در واقع میدانی است که توسط جریانهای مغناطیس کنندۀ سه فاز تولید شده اند جریان استاتور در فاز a از رابطۀ زیر بدست می آید .

(21-1)
مؤلفه های مغناطیس کنندۀ جریان های استاتور تولید میدان گردان در فاصله هوایی می کنند . این میدان ولتاژهای القایی Ema , Emb , Emc را در استاتور ایجاد می کند . در مدار شکل ( 10-1 ) مقدار ولتاژ القایی در فاز a

(22-1)

اگر رتور هم جهت و هم سرعت با میدان گردان حرکت کند لغزش صفر می شود (S=0) و ولتاژ القایی در فاز A رتور

(23-1)

می باشد . در این شرایط هر دو صفر می باشند . جریان فاز a استاتور هان جریان مغناطیس کنندگی Ima می باشد این جریان نسبت به ولتاژ Va مقدار 90 درجه اختلاف فاز دارد و پس فاز می باشد .

حالا شرایطی را در نظرمی گیریم که رتور با سرعت کمتر از سرعت سنکرون دوران کند. بنابر این می باشد و ولتاژ القایی Ema در رتور ایجاد می شود که جریانی در رتور با فرکانس Wr = SWs ایجاد می کند . مقدار جریان برابر مقدار زیر

(24-1)

می باشد . مؤلفۀ جریان قدرت در مدار استاتور

(25-1)

جریان نسبت به ولتاژ القایی پس فاز است همانقدر که نسبت به پس فاز می باشد . مقدار زاویه برابر

(26-1)

دیاگرام فازی معادلۀ ( 21-1 ) در شکل ( 10-1 ) b نشان داده شده است . یک میدان گردان متناظر با این دیاگرام در شکل ( 10-1 ) c نشان داده شده است .

در لحظه ای که Ima مقدار ماکزیمم خود را دارد به صورت عمود رو به پایین می باشد . بردارها در شکل ( 10-1 ) d نشان داده شده است .

میدان گردان استاتور منتاسب با جریان می باشند و وقفۀ هم نام نسبت به دارد که اندازۀ آن همان زاویه بین می باشد . میدان گردان مؤلفه جریان های قدرت را میتوان از دیاگرام فازی بدست آورد . اما میدان گردان ناشی از جریان های رتور IA , IB , IC به صورت در شکل نمایش داده شده است . از شکل d(10-1)

(27-1)

گشتاور تولیدی در اثر میدان گردان مطابق رابطۀ زیر می باشد .

(28-1)

زاویه ای است که از محور استاتور به محور رتور اندازه گیری می شود . شکل ( 10-1 ) d حالت موتوری را نشان می دهد .

با افزایش لغزش s ولتاژ القایی Ema افزایش می یابد . جریان رتور IA و میدان گردان نیز افزایش پیدا می کند . جریان استاتور زیاد می شود تا میدان گردان زیاد شده و در نتیجه برآیند دو میدان ومیدان گردان با مقدار ثابتی باشد Fmg . با افزایش لغزش و افزایش می یابند و افزایش آنها طوری است که sin کاهش می یابد . تغییرات گشتاور سرعت را با استفاده از دیاگرام ( 11-1 ) بهتر می توان مشخص کرد .

شکل (11-1)

(29-1)

با جایگزینی در رابطۀ زیر داریم:

(30-1)

معادلۀ ( 22-1 ) نشان می دهد . Ema ثابت است . بنابر این نیز ثابت خواهد بود . در لغزش کم از معادلۀ ( 26 - 1 ) نتیجه می شود است . در شکل

( 10-1 ) d تقریباً عمود بر می باشد . با افزایش لغزش با نسبت کمتری افزایش می یابد . زیرا راکتانس اثر القایی از خود نشان میدهد . زاویه نیز افزایش می یابد . بنابر این افزایش گشتاور منتاسب با افزایش لغزش نیست . در لغزش زیاد از معادلات ( 23-1 ) و ( 24-1 ) داریم :

(31-1)

با افزایش لغزش ، به سمت یک مقدار ثابت میل می کند . ولی بسمت صفر میل می کند . کل تغییرات با استفاده از معادله ( 30 -1 ) قابل بیان می باشد . در لغزش زیاد با هم زاویۀ حدود درجه می سازد .

با افزایش لغزش ابتدا گشتاور زیاد می شود اما بعد از رسیدن به یک مقدار ماکزیمم شروع به کاهش می کند .

با استفاده از شکل ( 10-1 ) دیده می شود قدرت ورودی به هر فاز برابر مقدار زیر

(32-1)

می باشد . با جایگزیین در معادلۀ ( 30-1 ) گشتاور توسعه یافته در ماشین P = 2 قطبی بدست می آید .

(33-1)

این معادله را می توان با معادلۀ ( 30-1 ) مقایسه کرد . متناسب با می باشد و متناسب با می باشد .

بحثهای بالا بطریق مشابه می توانند در مورد ژنراتور آسنکرون ربع دوم شکل ( 17-1 ) تکرار شود .

1 – 2 – 3 ) موتور گردان :

در موتور گردان اندکتانس و مقاومت عوض نمی شود . اما رابطه ولتاژ القایی اولیه و ثاونویه ( استاتور و رتور ) تغییر خواهد کرد . فرکانس نیروی محرکه القایی رتور از رابطه زیر تعیین می شود .

(34-1)
این سرعت ها اگر بر حسب زاویۀ الکتریکی باشند برای موتورهای چند قطبی صادق هستند در غیر این صورت معادله زیر نوشته می شود که معادله بر حسب سرعت زاویه ای مکانیکی می باشد .

(35-1)

مدار معادل موتور گردان در شکل ( 12-1 ) نشان داده شده است . رتور ممکن است اتصال کوتاه در نظر گرفته شود و امپدانس ZA فقط شامل مقاومت رتور و امپدانس پراکندگی باشد . شرط انیکه ماشین اندوکسیدنی در حالت موتر کار کند .

(36-1)

بنابراین رتور باید از میدان گردان آهسته تر دوران کند . تعریف لغزش از رابطه زیر مشخص می شود .

(37-1)

این عامل در نیروی محرکه القایی ، امپدانس ، نسبت توان موتور القایی مؤثر واقع می شود .

رابطۀ ولتاژ القایی رتور و استاتور مطابق رابطۀ زیر می باشد .

(38-1)

شکل (12-1)

(39-1)

نسبت جریان دقیقاً همانند حالت قبل است .

(40-1)

اما نسبت امپدانس مطابق رابطۀ زیر می باشد .

(41-1)

از معادلۀ ( 16- 1 ) و نسبت فرکانس بین دو قسمت مدار معادل مشخص می شود که ترانسفورماتور ایده آل در مدار معادل موتور ساکن با وسیلۀ دیگری عوض شده است که خصوصیات بیشتری از القای ولتاژ و تبدیل ولتاژ جریان می باشد . به طور مشخص یک تبدیل فرکانس صورت گرفته است .

(42-1)

به این فرکانس معمولاً فرکانس لغزش می گویند .

با صرف نظر از اینکه تلقات هستۀ استاتور توان جذب شده توسط فاز a مقدار زیر

(43-1)

می باشد وتوان جذب شده سه فاز مطابق رابطۀ زیر می باشد .

(44-1)
به این توان معمولاً توان فاصلۀ هوایی می گویند . توان تلف شده در رتور

(45-1)

با استفاده از رابطۀ ( 39-1 ) و ( 40-1 ) رابطه زیر بدست می آید .

(46-1)
(47-1)

از توان توسعه یافته در فاصلۀ هوایی نقطه به نسبت S تبدیل به تلفات در رتور می شود . بنابراین بقیه در فاصلۀ هوایی تبدیل به توان مکانیکی می شود .

(48-1)

با استفاده از معادلۀ ( 37-1 ) داریم :

(49-1)

با جایگزینی در معادلۀ ( 48-1 ) داریم :

(50-1)

ماشین سه فاز ایده آل در شکل ( 12-1 ) قدرت مکانیکی ار به صورت گشتاور سرعت بار مکانیکی تحویل می دهد .

(51-1)

(52-1)

بنابراین گشتاور از تقسیم قدرت توسعه یافته در فاصلۀ هوایی بر سرعت دوران زاویه ای بدست می آید در شرایط ماندگار قدرت جذب شده توسط استاتور ثابت می باشد . تلفات در رتور ماشین هم ثابت می باشد . بنابراین قدرت مکانیکی توسعه یافته روی رتور نیز ثابت می باشد . در هنگام بی باری موتور آسنکرون با لغزش ناچیز دوران می کند . هنگامی که بار مکانیکی به موتور تحمیل می شود سرعت دوران کم می شود بنابر این لغزش و فرکانس رتور ، جریان رتور ، وگشتاور توسعه یافته افزایش می یابد تا زمانی که گشتاور توسعه یافته و گشتاور خارجی با هم برابر می شوند .

اگر رتور با سرعت بیشتر ا سرعت سنگرون دوران کند لغزش منفی می شود. جهت ولتاژ القایی در رتور معکوس می شود . جریان رتور نیز معکوس می شود . گشتاور داخلی با گردش محور موتور مخالفت می کند . بنابراین در سرعت های بالاتر از سرعت سنکرون شبیه به ژنراتور عمل می کند و اگر به شبکۀ AC در موتور اندکسیدنی با رتور اتصال کوتاه شده مقدار کمی نیروی محرکۀ القایی لازم است تا جریان نامی رتور و گشتاور نامی را ایجاد کند . بنابر این لغزش کمی مورد نیاز است . سرعت تقریباً ثابت است و با افزایش بار خیلی کم افت می کند . قابلیت راه اندازی موتور القایی نیز خوب می باشد . این خصوصیات باعث شده است . تا درجاهایی که کنترل سرعت مطرح نباشد کاربرد خوبی داشته باشد .

این موتور ساده و ارزان است و به همین دلیل کاربرد وسیعی دارد . رتور و استاتور آن برای کاهش تلفات فوکو ورقه ورقه شده است . برای کاهش جریان مغناطیس کنندگی فاصلۀ هوایی را تاحد امکان کاهش می دهند .

رتور در دو نوع سیم بندی شده و قفس سنجابی ساخته می شود . سیم پیچیی هم به صورت مثلث و هم ستاره است هر چند معمولاً یکی از استاتور یا رتور را به صورت مثلث می بندند .

اگر ترمینال های مدار معادل ( 12-1 ) را اتصال کوتاه کنند پارامترهای رتور را به طرف استاتور انتقال دهند مدار معادل ( 13-1 ) بدست می آید . امپدانس رتور بوسیلۀ معادلۀ

( 27-1 ) بدست می آید .

(53-1)

(54-1)

(55-1)

(56-1)

اختلاف پتانسیل اعمال شده به رتور Ema می باشد و جریان مطابق رابطه ( 40-1 ) بر حسب جریان IA بدست می آید با این مراحل انجام شده قسمت ایده آل ماشین حذف می شود و این مسئله دو نتیجه دارد . تمامی مدار با فرکانس ws کار میکند و خروجی Pamech حذف شده است . ولی Pma توان ورودی به فاصلۀ هوایی تغییر نکرده است . این توان به دو قسمت Pamech توان مکانیکی و PmA تلفات رتور تقسیم می شود که اکنون در به مصرف می رسد .

(57-1)

از معادلات ( 53-1 ) و ( 38-1 ) داریم :

(58-1)

بنابراین اولین عبارت سمت راست معادلۀ ( 57-1 ) نشان دهندۀ تلفات مسی در رتور می باشد . با استفاده از قانون بقا انرژی قسمت دوم باید توان مکانیکی توسعه یافته یک فاز باشد .

(59-1)

بنابراین مقاومت به دو مقاومت سری تقسیم می شود که اولی تبدیل به توان مکانیکی یک فاز و دومی نشان دهندۀ مقاومت روتور می باشد .

شکل ( 13-1)

مدار دو حلقه ای شکل ( 13-1 ) برای بیان کردن گشتاور داخلی بر حسب متغیرهای ما مشکل است هر چند با انجام تقریباتی می توان دقت را در حد خوبی حفظ کرد بنابر این راکتانس مغناطیس کننده WsLms به طرف ترمینال منتقل می شود و باقی پارامترها در

معادلۀ ( 60-1 ) بیان شده است .

(60-1)

شکل ( 14-1)

شکل ( 14-1 ) مدار معادل تقریبی بود .

باید توجه داشته باشیم که این مدار معادل با صرفه نظر کردن ازچند پارامتر بدست آمده ودقیق نیست. البته برای هماهنگ شدن محاسبات استاندارد IEEE ( انجمن مهندسین برق و الکترونیک آمریکا ) نی زمدار معادل هایی پیشنهاد نموده اند که در شکل ( 15-1 ) می بینیم .

شکل ( 15-1)

برای سهولت در انجام محاسبات در مدار IEEE بهتر است از روش تونن استفاده گردد به عبارت دیگر بجای استفاده از پارامترهای مختلف می توان از Xth , Rth , Vth استفاده نمود .



شکل (16-1)

1 – 2 – 4 ) موتور در شرایط ماندگار :

در مدار معادل جدید روابط به صورت زیر نوشته می شوند .

(61-1)

(62-1)

رابطه بین گشتاور داخلی و سرعت مکانیکی با استفاده از شکل ( 13-1 ) بدست می آید . از معادلۀ ( 61-1 ) داریم:

(63-1)

و از معادلۀ ( 52-1 ) نیز داریم:

(64-1)

از شکل ( 14-1 ) داریم :

(65-1)

با جایگزینی معادلات ( 63-1 ) و (65-1 ) در معادلۀ ( 64-1 ) داریم :

(66-1)

رابطۀ بین لغزش و گشتاور و یا سرعت – گشتاور از معادلۀ ( 66-1 ) قابل محاسبه می باشد در سرعت حدود سرعت سنکرون ، لغزش به سمت صفر میل می کند . بنابراین رابطه به صورت زیر نوشته می شود .

(67-1)

(68-1)
بنابراین در نزدیکی سرعت سنکرون گشتاور و جریان نسبت خطی با لغزش دارد . در شکل( 17-1 ) با خط چین نشان داده شده است . در ولتاژ ثابت در رابطه گشتاور فقط تابعی از لغزش می باشد می توان لغزشی را که در آن گشتاورماکزیمم می شود با مشتق گرفتن از رابطه و برابر صفر قرار دادن آن محاسبه کرد .

(69-1)

با جایگزین کردن در رابطه مقدار گشتاور ماکزیمم

(70-1)

این به گشتاوور شکست نیز نامیده می شود . اگر مقدار لغزش منفی در رابطه قرار داده شود ماکزیمم گشتاور منفی یا ژنراتوری بدست می آید .

(71-1)

بنابراین اما در ماشین های بزرگ

(72-1)

معادله نشان میدهد گشتاور ماکزیمم به وسیلۀ راکتانس XL محدود می شود و ازمقاومت رتور مستقل می باشد .

شکل ( 17-1)

در لغزش زیاد و معادلۀ ( 66-1) با تقریب به معادلۀ زیر تبدیل می شود

(73-1)

گشتاور با معکوس لغزش متناسب است . منحنی به وسیلۀ خط چین در شکل نشان داده شده است . با قرار دادن S = 1 در معادله گشتاور راه اندازی بدست می آید .

(74-1)

در موتورهای القایی با ربور سیم پیچی شدۀ استاندارد :

(75-1)

(76-1)

TFL گشتاور نامی در بار نامی موتور می باشد .

1 - 3 ) موتور فقس سنجابی:

در مواردی که راه اندازی زیاد انجام می شود و گشتاور راه اندازی لازمه زیاد باشد از موتور با رتور سیم بندی شده با مقاومت خارجی استفاده می شود . اگر به کنترل سرعت و کار در سرعت پایین نیاز نباشد در این صورت ازموتور فقس سنجابی استفاده می شود .

موتور فقس سنجابی به گروه های مختلفی تقسیم می شوند که این تقسیم بندی بیشتر به نوع ساختار رتور مربوط می باشد . مشخصۀ گشتاور سرعت در شکل ( 18-1 ) و جدول ( 1-1 ) آمده است . مشخصات در جدول برای موتور 110 اسب ، 230 ولت می باشد . و این اعداد با عوض شدن مقادیر نامی تغییر می کنند . گشتاور ماکزیمم برای موتور با رتور سیم پیچی شده 2.25 برابر گشتاور بار نامی می باشد .

معمولاً موتورهای قفسه ای برای راه اندازی مستقیم به شبکه وصل می شوند و در این حالت تغذیه باید مداری باشد که در جریان راه اندازی ولتاژ ترمینالهای موتور خیلی افت نکند .


تغذیه دام و طیور

نقش تغذیه در موجودات زنده بر هیچ‌کس پوشیده نیست هر موجود جاندار دارای ویژگی دریافت انرژی از محیط اطراف خود و تغییر و تبدیل و مصرف انرژی می‌باشد چگونگی دریافت انرژی و مواد‌ مغذی مورد نیاز جهت مصرف انرژی و ادامه حیات موضوع علم تغذیه می‌باشد علم تغذیه ترکیبی از دانش بیوشیمی و فیزیولوژی در جهت بررسی ویژگی‌های مواد خوراکی و چگونگی استفاده از آنها توسط
دسته بندی دام و طیور
فرمت فایل doc
حجم فایل 36 کیلو بایت
تعداد صفحات فایل 39
تغذیه دام و طیور

فروشنده فایل

کد کاربری 7169

نقش تغذیه در موجودات زنده بر هیچ‌کس پوشیده نیست. هر موجود جاندار دارای ویژگی دریافت انرژی از محیط اطراف خود و تغییر و تبدیل و مصرف انرژی می‌باشد. چگونگی دریافت انرژی و مواد‌ مغذی مورد نیاز جهت مصرف انرژی و ادامه حیات موضوع علم تغذیه می‌باشد. علم تغذیه ترکیبی از دانش بیوشیمی و فیزیولوژی در جهت بررسی ویژگی‌های مواد خوراکی و چگونگی استفاده از آنها توسط دستگاه گوارش موجود زنده می‌باشد.

تغذیه فرآیندی است که در طی آن سلول‌های بدن حیوان قابلیت استفاده از مواد شیمیایی مورد نیاز خود را جهت انجام مطلوب واکنش‌های متابولیکی و شیمیایی برای رشد، نگهداری(Maintenance)، کار و تولید دریافت می‌نماید. شناخت روابط بین مواد موجود در خوراک‌ها و نیاز سلول‌های موجود زنده قبل از استفاده عملی و خوراک دادن، ضروری می‌باشد. در آغاز بررسی علم تغذیه نیاز به شناخت کلیه این روابط از نظر بیوشیمی و فیزیولوژی داریم.

بطور کلی مواد خوراکی، تشکیل دهنده غذا هستند و غذا ماده‌ای است که موجود زنده قادر به‌خوردن آن و سپس انجام مراحل هضم و جذب بر روی آن باشد. در اغلب غذاها، کلیه مواد شیمیایی موجود در غذا جهت موجود زنده قابل استفاده نیستند و مقداری از آن از طریق دستگاه گوارش دفع می‌گردد.

در علوم دامی با توجه به هدف ما از پرورش دام‌ها که ایجاد منابع غذایی با کیفیت جهت انسان می‌باشد، دیدگاه‌های اقتصادی نیز در آن حائز اهمیت می‌باشند و ضرورت شناخت فرآیندهای غذایی آشکار می‌باشد.

در پرورش حیوانات اهلی قسمت اعظم هزینه تولید مربوط به هزینه تغذیه می‌باشد که در برخی از شاخه‌های دامپروری تا 80% از کل هزینه پرورش دام را هزینه تغذیه شامل می‌شود. بنابراین در شرایط متعارف مدیریت تغذیه بالاترین اهمیت اقتصادی را در پرورش دام به خود اختصاص می‌دهد.

هدف ما در بخش دامپروری تکمیل مواد موجود در خوراک جهت پاسخگویی دقیق به مجموع احتیاجات غذایی بدن دام می‌باشد. امروزه علاوه بر خوراک‌های طبیعی جهت تکمیل جیره‌های غذایی به آنها مواد مصنوعی افزودنی مانند ویتامین‌ها، نمک و اسیدهای‌آمینه مصنوعی نیز اضافه می‌کنیم اما هیچ‌کس نمی‌تواند اطمینان داشته باشد که غذایی کاملاً مطابق با نیاز حیوان تهیه نموده است بلکه تلاش ما در جهت نزدیک کردن هرچه بیشتر ترکیب خوراک به نیاز دام می‌باشد. ویژگی یک متخصص تغذیه موفق، شناخت دقیق مواد خوراکی و اثرات متقابل بین مواد خوراکی و نیز شناخت دقیق ساختار فیزیولوژیک و آناتومیک دستگاه گوارش دام می‌باشد. پس از شناخت مواد خوراکی و نحوه پاسخ دام به ماده خوراکی، متخصص تغذیه باید قادر باشد غذایی با کاملترین ترکیب و با حداقل هزینه جهت تولید با کیفیت و اقتصادی، تهیه نماید. روش‌های تهیه خوراک و تنظیم جیره غذایی در ادامه دروس تغذیه مورد بررسی قرار خواهند گرفت.


بررسی استفاده از پایدار کننده های سیستم قدرت (PSS) جهت بهبود میرایی نوسانات با فرکانس کم سیستم

توسعه شبکه های قدرت نوسانات خود به خودی با فرکانس کم را، در سیستم به همراه داشته است بروز اغتشاش هایی نسبتاً کوچک و ناگهانی در شبکه باعث بوجود آمدن چنین نوساناتی در سیستم می شود در حالت عادی این نوسانات بسرعت میرا شده و دامنه نوسانات از مقدار معینی فراتر نمی رود اما بسته به شرایط نقطه کار و مقادیر پارامترهای سیستم ممکن است این نوسانات برای مدت طول
دسته بندی برق
فرمت فایل doc
حجم فایل 3459 کیلو بایت
تعداد صفحات فایل 156
بررسی استفاده از پایدار کننده های سیستم قدرت (PSS) جهت بهبود میرایی نوسانات با فرکانس کم سیستم

فروشنده فایل

کد کاربری 8044

فهرست مطالب

عنوان صفحه

چکیده

فصل اول مقدمه

1-1- پیشگفتار......................... 4

1-2- رئوس مطالب ...................... 7

1-3- تاریخچه ......................... 9

فصل دوم : پایداری دینامیکی سیستم های قدرت

2-1- پایداری دینامیکی سیستم های قدرت.. 16

2-2- نوسانات با فرکانس کم در سیستم های قدرت 17

2-3- مدلسازی سیستمهای قدرت تک ماشینه . 18

2-4- طراحی پایدار کننده های سیستم قدرت (PSS) 23

2-5- مدلسازی سیستم قدرت چند ماشینه.... 27

فصل سوم: کنترل مقاوم

3-1-کنترل مقاوم ...................... 30

3-2- مسئله کنترل مقاوم................ 31

3-2-1- مدل سیستم...................... 31

3-2-2- عدم قطعیت در مدلسازی........... 32

3-3- تاریخچه کنترل مقاوم.............. 37

3-3-1- سیر پیشرفت تئوری............... 37

3-3-2- معرفی شاخه های کنترل مقاوم..... 39

3-4- طراحی کنترل کننده های مقاوم برای خانواده ای از توابع انتقال ................................... 45

3-4-1- بیان مسئله..................... 45

3-4-2- تعاریف و مقدمات................ 46

3-4-4-‌‌‌تبدیل مسئله پایدارپذیری مقاوم به‌یک مسئله Nevanlinna–Pick ...................................... 50

3-4-5- طراحی کنترل کننده.............. 53

3-5- پایدار سازی مقاوم سیستم های بازه ای 55

3-5-1- مقدمه و تعاریف لازم.................... 55

2-5-3- پایداری مقاوم سیستم های بازه ای 59

3-5-3- طراحی پایدار کننده های مقاوم مرتبه بالا 64

فصل چهارم : طراحی پایدار کننده های مقاوم برای سیستم های قدرت

4-1- طراحی پایدار کننده های مقاوم برای سیستم های قدرت 67

4-2- طراحی پایدار کننده های مقاوم به روش Nevanlinna – Pick 69

برای سیستم های قدرت تک ماشینه ........ 69

4-2-1- مدل سیستم...................... 69

4-2-2- طرح یک مثال.................... 71

4-2-3 – طراحی پایدار کننده مقاوم به روش Nevanlinna – Pick 73

4-2-2- بررسی نتایج.................... 77

4-2-5- نقدی بر مقاله.................. 78

4-3- بررسی پایداری دینامیکی یک سیستم قدرت چند ماشینه 83

4-3-1- مدل فضای حالت سیستم های قدرت چند ماشینه 83

4-3-2- مشخصات یک سیستم چند ماشینه..... 86

4-3-3-طراحی پایدار کننده های سیستم قدرت 90

4-3-4- پاسخ سیستم به ورودی پله........ 93

4-4- طراحی پایدار کننده های مقاوم برای سیستم های قدرت چند ماشینه ............................... 95

4-4-1- اثر تغییر پارامترهای بر پایداری دینامیکی 95

4-4-2- مدلسازی تغییر پارامترها به کمک سیستم های بازه ای...................................... 101

4-4-3-پایدارسازی مجموعه‌ای ازتوابع انتقال به کمک تکنیک‌های‌بهینه سازی...................................... 105

4-4-4- استفاده از روش Kharitonov در پایدار سازی مقاوم 106

4-4-5- استفاده از یک شرط کافی در پایدار سازی مقاوم 110

4-5- طراحی پایدار کننده های مقاوم برای سیستم قدرت چندماشینه (2)......................... 110

4-5-1- جمع بندی مطالب................. 110

4-5-2-طراحی پایدار کننده های‌مقاوم بر اساس مجموعه‌ای از نقاط کار.............................. 111

4-5-3- مقایسه عملکرد PSS کلاسیک با کنترل کننده های جدید...................................... 113

4-5-4- نتیجه گیری..................... 115

فصل پنجم : استفاده از ورش طراحی جدید در حل چند مسئله

5-1- استفاده از ورش طراحی جدید در حل چند مسئله 121

5-2- طراحی PSS‌های مقاوم به منظور هماهنگ سازی PSS ها ...................................... 122

5-2-1- تداخل PSS‌ها ................... 122

5-2-2- بررسی مسئله تداخل PSS‌ها در یک سیستم قدرت سه ماشینه ...................................... 124

5-2-3- استفاده از روش طراحی بر اساس چند نقطه کار در هماهنگ ......................................... 126

انتخاب مجموعه مدلهای طراحی ........... 127

5-2-4-‌مقایسه‌عملکرد دو نوع پایدار کننده به کمک شبیه سازی کامپیوتری............................. 130

5-3- طراحی کنترل کننده های بهینه ( فیدبک حالت ) قابل اطمینان برای سیستم قدرت ......... 132

5-3-1) طراحی کننده فیدبک حالت بهینه . 132

تنظیم کننده های خطی ................. 133

5-3-2-کاربرد کنترل بهینه در پایدار سازی سیستم های قدرت چند ماشینه............................ 134

5-3-3-طراحی کنترل بهینه بر اساس مجموعه‌ای از مدلهای سیستم ...................................... 136

5-3-4- پاسخ سیستم به ورودی پله ...... 140

فصل ششم : بیان نتایج

6-1- بیان نتایج ...................... 144

6-2- پیشنهاد برای تحقیقات بیشتر....... 147

مراجع................................. 148

ضمیمه الف – معادلات دینامیکی ماشین سنکرون 154

ضمیمه ب – ضرایب K1 تا K6 .............. 156

ضمیمه پ – برنامه ریزی غیر خطی......... 158

چکیده :

توسعه شبکه های قدرت نوسانات خود به خودی با فرکانس کم را، در سیستم به همراه داشته است. بروز اغتشاش هایی نسبتاً کوچک و ناگهانی در شبکه باعث بوجود آمدن چنین نوساناتی در سیستم می شود. در حالت عادی این نوسانات بسرعت میرا شده و دامنه نوسانات از مقدار معینی فراتر نمی رود. اما بسته به شرایط نقطه کار و مقادیر پارامترهای سیستم ممکن است این نوسانات برای مدت طولانی ادامه یافته و در بدترین حالت دامنه آنها نیز افزایش یابد. امروزه جهت بهبود میرایی نوسانات با فرکانس کم سیستم، در اغلب شبکه های قدرت پایدار کننده های سیستم قدرت (PSS) به کار گرفته می شود.

این پایدار کننده ها بر اساس مدل تک ماشین – شین بینهایتِ سیستم در یک نقطه کار مشخص طراحی می شوند. بنابراین ممکن است با تغییر پارامترها و یا تغیر نقطه کار شبکه، پایداری سیستم در نقطه کار جدید تهدید شود.

موضوع این پایان نامه طراحی پایدار کننده های مقاوم برای سیستم های قدرت است، به قسمی که پایداری سیستم در محدوده وسیعی از تغییر پارامترها و تغییر شرایط نقطه کار تضمین شود. در این راستا ابتدا به مطالعه اثر تغییر پارامترهای بر پایداری
سیستم های قدرت تک ماشینه و چند ماشینه پرداخته می شود. سپس دو روش طراحی کنترل کننده های مقاوم تشریح شده، و در مسئله مورد مطالعه به کار گرفته می شوند. سرانجام ضمن نقد و بررسی این روش ها، یک روش جدید برای طراحی PSS ارائه می شود. در این روش مسئله طراحی پایدار کننده مقاوم به مسئله پایدار کردن
مجموعه ای از مدلهای سیستم در نقاط کار مختلف تبدیل می شود. این مسئله نیز به یک مسئله استاندارد بهینه سازی تبدیل شده و با استفاده از روش های برنامه ریزی غیر خطی حل می گردد. سرانجام کارایی روش فوق در طراحی پایدار کننده های مقاوم برای یک سیستم قدرت چند ماشینه در دو مسئله مختلف (اثر تغییر پارامترها بر پایداری دینامیکی و تداخل PSS ها) تحقیق شده و برتری آن بر روش کلاسیک به اثبات می رسد.

فصل اول

1-1- پیشگفتار:

افزایش روز افزون مصرف انرژی الکتریکی، توسعه سیستم های قدرت را بدنبال داشته است بطوریکه امروزه برخی از سیستم های قدرت در جغرافیایی به وسعت یک قاره گسترده شده اند. به موازات این توسعه که با مزایای متعددی همراه است، در شاخه دینامیک سیستم های قدرت نیز مانند سایر شاخه ها مسائل جدیدی مطرح شده است. از جمله این مسائل می توان به پدیده نوسانات با فرکانس کم، تشدید زیر سنکرون (SSR)، و سقوط ولتاژ اشاره کرد.

پدیده نوسانات با فرکانس کم در این میان از اهمیت ویژه ای برخوردار است و در بحث پایداری دینامیکی سیستم های قدرت مورد توجه قرار می گیرد. بروز
اغتشاش های مختلف در شبکه، انحراف سیستم از نقطه تعادل پایدار را به دنبال دارد، در چنین وضعیتی به شرط اینکه سنکرونیزم شبکه از دست نرود، سیستم با نوسانات فرکانس کم به نقطه تعادل جدید نزدیک می شود. هنگامی که یک ژنراتور به تنهایی کار می کند، نوسانات با فرکانس کم به دلیل میرایی ذاتی به شکل نسبتاً قابل قبولی میرا می شوند. اما کاربرد برخی از المان ها مانند تحریک کننده های سریع، با اثر دینامیک قسمت های مختلف شبکه ممکن است باعث تزریق میرایی منفی به شبکه شود، به طوریکه نوسانات فرکانس کم شبکه به شکل مطلوبی میرا نشده و یا حتی از میرایی منفی برخوردار شوند. بدیهی است افزایش میرایی مودهای الکترومکانیکی سیستم در چنین وضعیتی می تواند به عنوان یک راه حل مورد استفاده قرار گیرد. بر این اساس پایدار کننده های سیستم قدرت (PSS) بر اساس مدل تک ماشین – شین بینهایت طراحی شده و در محدوده وسیعی به کار گرفته می شوند. از دید تئوری کنترل، پایدار کننده های فوق در واقع یک کنترل کننده کلاسیک با تقدیم فاز[1] می باشد که بر اساس مدل خطی سیستم در یک نقطه کار مشخص طراحی می شوند.

همراه با پیشرفت های چشمگیری در تئوری سیستم ها و کنترل، روش های جدید برای طراحی پایدار کننده های سیستم قدرت ارائه شده است، که به عنوان نمونه می توان به کنترل کنده های طرح شده بر اساس تئوری های کنترل تطبیقی، کنترل مقاوم، شبکه های عصبی مصنوعی و کنترل فازی اشاره کرد [5-1]. در همه این روش ها سعی بر اینست که نقایص موجود در طراحی کلاسیک مرتفع شده به طوریکه کنترل کننده به شکل موثرتری بر پایداری سیستم و بهبود میرایی نوسانات اثر گذارد.

روش های کنترل مقاوم، که در این پایان نامه مورد توجه است به شکل جدی از اوایل دهه هشتاد (1980) مطرح شد و خود به شاخه های متعددی تقسیم می شود. قبل از هر توضیحی درباره کنترل مقاوم نخست به بیان مفهوم عدم قطعیت در مدل
می پردازیم. در کنترل کلاسیک طراحی بر اساس مدل مشخصی از سیستم صورت
می گیرد. مدل سیستم تنها یک تقریب از دینامیک های واقعی سیستم است. حذف دینامیک های سریع به منظور ساده سازی، تغییر مقادیر پارامترهای مدل به دلایل مختلف از منابع ایجاد عدم قطعیت در مدل سیستم ها می باشد. بنابراین بدلیل وجود چنین عدم قطعیت هایی در مدلسازی ، اهداف مورد نظر طراح ممکن است توسط کنترل کننده های طرح شده بر اساس مدل تحقق نیابند.

به منظور رفع این مشکل در کنترل مقاوم بر اینستکه عدم قطعیت های حائز اهمیت موجود در مدل، در طراحی کنترل کننده لحاظ شوند. معمولاً مدلسازی عدم قطعیت در اکثر شاخه های کنترل مقاوم خانواده ای از سیستم ها را بوجود می آورد، حال کنترل کننده مقاوم بایستی چنان طرح شود که برای هر یک از اعضاء این خانواده اهداف مورد نظر در طراحی برآورده شود.

موضوع این پایان نامه طراحی پایدار کننده های مقاوم برای سیستم های قدرت است، به قسمی که پایداری سیستم در محدوده وسیعی از تغییر پارامترها و تغییر شرایط نقطه کار تضمین شود. در این راستا ابتدا به مطالعه اثر تغییر پارامترها بر پایداری
سیستم های قدرت تک ماشینه و چند ماشینه پرداخته می شود. سپس دو روش طراحی کنترل کننده های مقاوم تشریح شده، و در مسئله مورد مطالعه به کار گرفته می شوند. سرانجام ضمن نقد و بررسی این روش ها، یک روش جدید برای طراحی PSS ارائه می شود. در این روش مسئله طراحی پایدار کننده مقاوم به مسئله پاردار کردن مجموعه ای از مدل های سیستم در نقاط کار مختلف تبدیل می شود. این مسئله نیز به یک مسئله استاندارد بهینه سازی تبدیل شده و با استفاده از روش های برنامه ریزی غیر خطی حل می گردد. سرانجام کارایی روش فوق در طراحی پایدار کننده های مقاوم برای یک سیستم قدرت چند ماشینه در دو مسئله مختلف (اثر تغییر پارامترها بر پایداری دینامیکی و تداخل PSS ها) تحقیق شده و برتری آن بر روش کلاسیک به اثبات می رسد.

1-2- رئوس مطالب :

بخش بعدی این فصل به بررسی تحقیقات انجام شده در زمینه طراحی پایدار
کننده های مقاوم سیستم های قدرت اختصاص داده شده است.

در فصل دوم نخست به بیان مفاهیم اساسی در پایداری دینامیکی، و تشریح پدیده نوسانات با فرکانس کم در سیستم های قدرت پرداخته می شود. مدلسازی سیستم تک ماشینه به منظور مطالعه پدیده نوسانات با فرکانس کم، و روش طراحی PSS به کمک این مدل در قسمت های بعدی این فصل صورت می گیرد. در بخش آخر فصل نیز مدلسازی سیستم های قدرت چند ماشینه و نکات مربوط به آن مورد بررسی قرار می گیرد.

در فصل سوم ابتدا صورت مسئله کنترل مقاوم به طور کامل تشریح می شود. سپس به تاریخچه کنترل مقاوم و سیر پیشرفت برخی از شاخه ای آن پرداخته می شود. در پایان فصل طی دو بخش جداگانه به توضیح روش های - Pick Nevanlinna و Kharitonov که در ادامه مورد استفاده قرار می گیرند، می پردازیم.

طراحی کنترل کننده مقاوم با استفاده از روش - Pick Kharitonov برای سیستم قدرت تکماشینه و نقد و بررسی یک مقاله در این زمینه در ابتدای فصل چهارم (بخش (4-2)) صورت می گیرد. در بخش (4-3) پس از بدست آوردن معادلات فضای حالت برای سیستم های قدرت چند ماشینه، به بررسی پایداری دینامیکی یک سیستم سه ماشینه در نقاط کار مختلف و طراحی PSS در یک نقطه کار ناپایدار می پردازیم. در بخش (4-4) اثر تغییر پارامترها بر پایداری این سیستم مطالعه شده و روش Kharitonov جهت طراحی پایدار کننده های مقاوم مورد استفاده قرار می گیرد. در بخش (4-5) به ارائه یک روش جدید که با الهام از روش Kharitonov شکل گرفته است، می پردازیم. سپس این روش به منظور طراحی یک کنترل کننده مقاوم که در محدوده وسیعی از تغییر شرایط نقطه کار پایداری سیستم را تضمین می کند، به کار گرفته می شود.

در فصل پنجم ابتدا روش فوق در حل مسئله تداخل PSS ها مورد استفاده قرار
می گیرد. سپس به طراحی کنترل کننده های فیدبک حالت بهینه بر اساس مجموعه ای از مدلهای سیستم، و پاره ای نکات در این زمینه می پردازیم.

فصل ششم نیز به یک جمع بندی کلی از پایان نامه و بیان نتایج اختصاص داده شده است.

1-3- تاریخچه

بررسی همه کارهای انجام شده در جهت بهبود پایداری دینامیکی سیستم های قدرت حتی به صورت مختصر، به دلیل مطالعات و تحقیقات متعددی که در این زمینه صورت گرفته است، گزارش مفصلی را طلب می کند.در این زیر بخش ضمن اشاره مختصر به شاخه های مهم تحقیق، کارهای انجام شده بر اساس شاخه کنترل مقاوم را مرور خواهیم کرد.

با بروز نا پایداری دینامیکی در سیستم های قدرت تحقیقات گسترده ای در این زمینه آغاز شد. مفاهیم اساسی پایداری دینامیکی برای ژنراتور سنکرون متصل به شین بینهایت، اولین بار توسط Demello و Concordia به شیوه ای زیبا در سال 1969 بیان شد [6]. در این مقاله با معرفی مفاهیم گشتاورهای سنکرون کننده و میرا کننده اثر پارامترهای مختلف سیستم و شرایط نقطه کار بر پایداری دینامیکی ماشین سنکرون تشریح شده، و بدنبال آن با استفاده از تئوری جبران فاز به طراحی PSS پرداخته شد. به دلیل اهمیت این مطالب در فصل دوم، به طور مفصل به بررسی پایداری دینامیکی سیستم های قدرت خواهیم پرداخت.

در مرجع [7] اثر دینامیک ماشین های سنکرون یک سیستم قدرت چند ماشینه بر پایداری دینامیکی ماشین i ام این شبکه بررسی شده است. حاصل این مطالعه چند توصیه مفید در طراحی PSS برای ماشین های سنکرون در سیستم های چند ماشینه می باشد.

همچنین از آنجایی که پایدار کننده های سیستم قدرت بر اساس مدل تک ماشین – شین بینهایت طراحی می شود، هماهنگ سازی این پایدار کننده ها در سیستم های قدرت چند ماشینه اجتناب ناپذیر است. بدین منظور روش های مختلفی (مانند
روش های طراحی ترتیبی و افزایش پهنای باند PSS‌ها) در جهت هماهنگ سازی PSS ها ارائه شده است. [13-8] .

از دیگر مسائل مورد مطالعه در زمینه پایداری دینامیکی سیستم های قدرت، تعیین بهترین محل برای نصب PSS در شبکه های بزرگ به منظور بهبود میرایی یک مود خاص شبکه می باشد. این موضوع که هم اکنون نیز در رأس تحقیقات قرار دارد در مراجع [8 و 14] مورد بررسی قرار گرفته است .

همگام با توسعه تئوری های کنترل روش های پایدار سازی سیستم های قدرت نیز بهبود یافت. از اوائل دهه 1970 کاربرد کنترل بهینه در بهبود پایداری دینامیکی به طور چشمگیری افزایش یافت. در مرجع [1] روش طراحی پایدار کننده با استفاده از تئوری کنترل بهینه به سیستم های قدرت چند ماشینه می باشد.

اگر چه استفاده از روش های کنترل بهینه[2] مورد استقبال فراوان محققان دانشگاهی قرار گرفت و مقالات متعددی در جهت توسعه این روشها در پایدار سازی سیستم های قدرت انتشار یافت، اما هرگز به شکل جدی در صنعت برق مطرح نشد. گذشته از مشکلات اجرایی استفاده از روش های کنترل بهینه در عمل، نقص اصلی این روش ها بی توجهی به مسئله عدم قطعیت های[3] مختلف موجود در مدل سیستم می باشد [18]. تغییر پارامترهای سیستم، صرفنظر از دینامیک های سریع و دینامیک های مدل نشده فرکانس بالا در مدلسازی ، از مهمترین منابع ایجاد عدم قطعیت در مدل سیستم ها
می باشد. چشم پوشی از عدم قطعیت های مختلف موجود در مدل ممکن است، نتایج گمراه کننده ای را به دنبال داشته باشد، به طوریکه اهداف مورد نظر در کنترل با به کارگیری کنترل کننده طرح شده بر اساس مدل سیستم، در سیستم واقعی تحقق نیابد.

در ادامه این زیر بخش کارهای انجام شده در جهت بهبود پایداری سیستم های قدرت که بر مبنای تئوری کنترل مقاوم شکل گرفته است را توضیح می دهیم.

بررسی استحکام پایداری[4] با استفاده از مفاهیم مقادیر تکین[5] ماتریس ها (که عمدتاً بر قضیه Nyquist تعمیم یافته استوارند) به منظور تحلیل پایداری دینامیکی سیستم های قدرت، اولین بار در سال 1984 به کار رفت [19]. Chan و Athans در این مقاله ابتدا با استفاده از گشتاورهای سنکروه کننده و میرا کننده یک مدل ماتریس تابع انتقال (s) G برای سیستم قدرت ارائه کردند. سپس با مدلسازی عدم قطعیت های ناشی از دینامیک های مدل نشده مودهای پیچشی شافت ژنراتور، تغییر مقادیر گشتاورهای سنکرون کننده و میرا کننده بدلیل تغییر شرایط نقطه کار، و تغییر در دینامیک های تحریک کننده های[6] سیستم به صورت عدم قطعیت های ضرب شوند به تحلیل پایداری سیستم پرداختند. این مقاله بیشتر جنبه تحلیل داشته و توصیه های مفیدی را در طراحی کنترل کننده های مقاوم به دنبال ندارد.

Ohtsuka و همکارانش در سال 1992 از تئوری کنترل در طراحی کنترل فیدبک حالت برای یک توربوژنراتور استفاده کردند [20]. آنها با استفاده از یک روند ماتریس گین فیدبک حالت را چنان طراحی کردند که نرم تابع انتقال حلقه بسته سیستم
می نیمم شود. مهمترین مزیت این روش بهبود پایداری و قابلیت بالا در دفع اغتشاش است. اشکال اصلی آن نیز افزایش مقادیر گین های فیدبک حالت نسبت به گین های بدست آمده از روش کنترل بهینه می باشد.

در مرجع [3]، Chow و همکارانش روش طراحی کنترل کننده های مقاوم را به منظور طراحی PSS مقاوم برای یک سیستم تک ماشینه بکار بردند. در این مقاله مقدار راکتانس خط انتقال بین ژنراتور سنکرون و شین بینهایت قطعی نبوده و عامل ایجاد عدم قطعیت در مدل سیستم می باشد. مهمترین مزیت این روش مقاوم بودن پایداری در برابر تغییرات راکتانس خط انتقال است. عیب این روش، بالا بودن مرتبه PSS مقارم می باشد.

در مرجع [21] تئوری Nevanlinna - Pick به منظور طراحی پایدار کننده مقاوم برای سیستم قدرت تک ماشین شین بینهایت به کار گرفته شده است. در ادامه بحث ضمن توضیح مفصل این تئوری به نقد و بررسی این مقاله نیز در انتهای بخش (4-2) خواهیم پرداخت.

طراحی کنترل کننده های فیدبک حالت غیر حساس نسبت به تغییر پارامترهای سیستم، در مرجع [22] مورد مطالعه قرار گرفته است. با استفاده از تئوری Lyapunov و معادله ریکاتی کنترل فیدبک حالت برای سیستم تک ماشین – شین بینهایت چنان طراحی
می شود که عملکرد سیستم در برابر تغییر پارامترهای ژنراتور سنکرون حساس نباشد. مزیت مهم این روش عدم نیاز به مقادیر واقعی پارامترهای ماشین است، تنها محدوده تغییر این پارامترها جهت طراحی مورد نیاز است.

در مرجع [18] تئوری کنترل به منظور طراحی یک کنترل کننده مقاوم برای سیستم توربو ژنراتور مورد استفاده قرار گرفته است. در این مقاله سیگنال کنترل به طور همزمان به اکتساتیروگاورنر اعمال می شود. استفاده از روش فوق ضمن بهبود پارداری دینامیکی و گذرا در محدوده وسیعی از شرایط نقطه کار خطر تحریک مودهای پیچشی شفت را نیز به دنبال ندارند.

موضوع مرجع [23] که بر پایه نتایج فصل چهارم این پایان نامه استوار است، طراحی پایدار کننده های مقاوم برای سیستم های قدرت چند ماشینه می باشد. در این مقاله ابتدا اثر تغیر پارامترها بر پایداری دینامیکی یک سیستم قدرت سه ماشینه مطالعه شده سپس یک روش جدید جهت طراحی PSS ارائه می شود. در این روش طراحی پاردار کننده مقاوم بر اساس مجموعه ای از مدل های سیستم در نقاط کار مختلف صورت می گیرد. مزیت اصلی این پایدار کننده ها که دارای ساختاری مشابه با PSS معمولی می باشند، بهبود پایداری سیستم در محدوده وسیعی از تغییر پارامترهای سیستم است.

فصل دوم


2-1- پایداری دینامیکی سیستم های قدرت[7]:

هر گاه سیستم قدرت بتواند پس از بروز اختلاف، به حالت دائمی باز گردد پایدار گفته می شود. بعبارت دیگر ساده تر حفظ سنکرونیزم یا همزمانی پس از اختلال را پایداری گویند. بر حسب عوامل مختلف ایجاد نا پایداری تعاریف گوناگونی از پایداری سیستم قدرت ارائه شده است. از جمله آنها می توان به پایداری مانا[8]، پایداری دینامیکی[9] و پایداری گذرا[10] اشاره کرد.

1- پایداری مانا: عبارتست از پایداری سیستم قدرت در مقابل تغییرات کوچک و تدریجی بار.

2- پایداری دینامیکی: هرگاه پایداری سیستم قدرت در مقابل اغتشاش ها کوچک و ناگهانی به خطر نیافتد سیستم را به طور دینامیکی پایداری گویند.

3- پایداری گذرا: به پایداری سیستم قدرت در برابر تغییرات بزرگ و ناگهانی (تریپ ژنرانورها، قطع یا اتصال کوتاه در خطوط) گفته می شود.

برای مطالعه هر یک از اقسام پایداری بایستی مدل مناسبی از سیستم را بدست آورد. در مدلسازی بایستی پدیده های با اهمیت و مرتبط با پایداری مورد مطالعه، در مدل منعکس شده و از نظر گرفتن پدیده های کم اهمیت در آن صرف نظر گردد. بدین جهت مدل مناسبی از سیستم قدرت برای بررسی یک پایداری خاص، ممکن است برای نوع دیگری از پایداری غیر مناسب باشد. به عنوان مثال در بحث پایداری دینامیکی می توان رفتار سیستم را با مدلی خطی توصیف کرد، حال آنکه این مدل جهت مطالعه پایداری گذرا فاقد اعتبار است. در ادامه، بحث پایداری دینامیکی سیستم قدرت تعقیب می شود.

موضوع بخش های بعدی فصل نیز به قرار زیر است:

بخش دوم به معرفی پدیده نوسانات با فرکانس کم در سیستم قدرت اختصاص داده شده است. در بخش سوم به مدلسازی سیستم قدرت تک ماشینه جهت مطالعه این پدیده پرداخته می شود. طراحی پایدار کننده سیستم قدرت جهت میرا کردن نوسانات با فرکانس کم موضوع بخش چهارم می باشد. و بالاخره در بخش پنجم مدلسازی سیستم های قدرت چند ماشینه به اختصار توضیح داده می شود.

2-2- نوسانات با فرکانس کم در سیستم های قدرت

توسعه شبکه های قدرت نوساناتی خود بخودی با فرکانس کم را، در سیستم به همراه داشته است.

بروز اغتشاش هایی نسبتاً کوچک و ناگهانی در شبکه باعث به وجود آمدن نوساناتی طبیعی در سیستم می شود. در حالت عادی این نوسانات بسرعت میرا شده و دامنه نوسانات از مقدار معینی فراتر نمی رود. اما ممکن است این نوسانات برای مدت طولانی ادامه یافته و در بدترین حالت دامنه آنها نیز افزایش یابد.

وجود چنین نوساناتی در شبکه خطرات جدی را به همراه داشته بهره برداری از سیستم را مشکل می سازد. تجربیات مختلف از سیستم های قدرت به هم پیوسته نشان داد این نوسانات در اثر تحریک مودهای الکترونیکی ژنراتورهای سنکرون بوجود
می آیند. امروزه جهت بهبود این پایداری از پایدار کننده های سیستم قدرت استفاده می شود.

2-3- مدلسازی سیستمهای قدرت تک ماشینه

ساده ترین شبکه جهت مطالعه پایداری دینامیکی سیستم قدرت، سیستم تک ماشین – شین بینهایت است. شکل (2-1) این شبکه ساده را نشان می دهد.

مدلسازی این شبکه از دو جهت حائزاهمیت است. نخست اینکه عملکرد ماشین سنکرون متصل به یک شبکه قدرت به کمک آن قابل بررسی است. دوم روشن شدن مفاهیم اصلی در این مدلسازی و تعمیم آن به سیستم های قدرت چند ماشینه می باشد.

شکل (2-1) سیستم تک ماشین شین بینهایت

به منظور مدلسازی شبکه شکل (2-1) بایایستی برای هر یک از اجزاء آن مدلی مناسب در نظر گرفت. مجموعه خط انتقال و ترانسفورمر بصورت یک امپدانس و بار محلی در پایانه ماشین سنکرون به صورت یک ادمپدانس مدلسازی می شود. ارائه مدلی مناسب برای ماشین سنکرون مهمترین مرحله مدلسازی است.

مدل ماشین سنکرون:

یک ماشین سنکرون با تقریب خوب به کمک سه سیم پیچ استاتور و سه سیم پیچی بر روی روتور (سیم پیچ میدان و دو سیم پیچ دمپر) مدلسازی می شود. معادلات دینامیکی توصیف کننده رفتار ماشین شامل معادلات الکترومغناطیسی بین پیچ ها و معادله الکترومکانیکی حاکم بر دینامیک روتور می باشد.

معادلات الکتریکی: معادلات دیفرانسیل الکتریکی طبیعی خطی (با صرف نظر از اشباع مغناطیسی) و متغیر با زمان دارند. به کمک تعریف متغیرهای جدید و استفاده از یک تبدیل موسوم به تبدیل پارک نه تنها تا حد زیادی این معادلات ساده می شوند، بلکه خاصیت متغیر با زمان بودن خود را نیز از دست می دهند [25]. این معادلات ساده شده که در مطالعات مختلف سیستم قدرت کاربرد فراوانی دارند در ضمیمه الف آورده شده اند.

جهت دستیابی به مدلی با حداقل مرتبه از پدیده های کم اهمیت در نوسانات با فرکانس کم صرف نظر می شود. مهمترین این پدیده ها عبارتند از:

1) در حین نوسانات با فرکانس کم جریان القاء شده در سیم پیچی های دمپر ناچیز است بنابراین از این سیم پیچی ها در مدلسازی صرف نظر می شود.

2) چون مقادیر ویژه پایدار متناظر با معادلات سیم پیچ های d و q (معادل سیم پیچ های استاتور) به اندازه کافی از محور موهومی دور می باشند؛ این معادلات به شکل جبری در نظر گرفته می شوند.

تنها معادلة دیفرانسیل الکتریکی باقیمانده مربوط به میدان ماشین سنکرون می باشد که به دلیل با اهمیت بودن دینامیک آن و اعمال کنترل از طریق سیستم تحریک حفظ
می شود.

معادله مکانیکی (نوسان):

این معادله بیان دینامیک حاکم بر حرکت دورانی روتور می باشد و به شکل توصیفی عبارتست از: برآیند گشتاورهای مکانیکی و الکتریکی وارد بر روتور برابر است با حاصلضرب ممان اینرسی در شتاب زاویه ای. معادله فوق یک معادلة دیفرانسیل مرتبه دوم غیر خطی است.

با توجه به این توضیحات مدل ریاضی شبکه شکل (2-1) شامل سه معادله دیفرانسیل مرتبه اول و تعدادی معادله جبری می باشد. دو ویژگی اصلی این معادلات غیر خطی بودن و وابستگی بین معادلات جبری و دیفرانسیل است.

نظر به موضوع مورد علاقه یعنی پاسخ سیستم قدرت به تغییرات کوچک؛ معادلات سیستم حول یک نقطه کار، خطی و ضرایب K1 تا K6 تعریف می شوند [6]. استفاده از این ضرایب علاوه بر اینکه دید فیزیکی را به همراه دارد باعث ساده شدن فرم ظاهری معادلات نیز می شود. ضرایب فوق به پارامترهای ماشین؛ شبکه انتقال؛ و نقطة کار بستگی دارند. در ضمیمه ب این ضرایب تعریف و توضیح داده می شوند.

شکل (2-2) مدل ماشین سنکرون متصل به شین بینهایت را به فرم بلوک دیاگرام نشان می دهد. در این بلوک دیاگرام همچنین سیستم تحریک ماشین بصورت یک تابع انتقال مرتبه اول مدلسازی شده است. دو حلقه اساسی مکانیکی و الکتریکی بترتیب در بالا و پایین این شکل دیده می شود.

شکل (2-2) بلوک دیاگرام تابع انتقال برای مطالعه پدیدة نوسانات با فرکانس کم

معادله مشخصه حلقة مکانیکی عبارتست از:

(2-1)

ریشه های معادله فوق همان مودهای نوساناتی سیستم بوده و از اهمیت ویژه ای در این بحث برخوردارند. تفاضل گشتاورهای مکانیکی و الکتریکی ورودی این حلقه، سرعت و زاویه روتور نیز خروجی های آن می باشند.

توابع انتقال متناظر با تحریک و مدار میدان ماشین سنکرون در حلقه الکتریکی قرار گرفته اند. این بلوک دیاگرام بروشی زیبا در مرجع [6] تجزیه و تحلیل شده و اثر دینامیک های مختلف بر ضرایب K1 و K6 و به دنبال آن بر پایداری ماشین سنکرون تشریح شده است.

معادلات حالت سیستم از این بلوک بسادگی بدست می آیند. با انتخاب بردار حالت به شکل زیر:

(22)

می توان نوشت:

(2-3)

که در آن ماتریس های A و B عبارتند از:

2-4- طراحی پایدار کننده های سیستم قدرت (PSS)

تحقیق و مطالعه نشان داد که کمبود میرائی مود الکترومکانیکی (ریشه های معادله
(2-1)) در سیستم های قدرت به هم پیوسته عامل ایجاد نوسانات با فرکانس کم
می باشد. هنگامی که یک ژنراتور به تنهایی کار می کند، خود مزبور دارای میرائی کافی بوده و نوسانات به شکل قابل قبولی میرا می شوند. گاهی استفاده از سیستم تحریک خودکار باعث اعمال میرائی منفی به سیستم قدرت ی شود که در نتیجه میرائی ذاتی سیستم از بین رفته نوساناتی غیر میرا در شبکه بوجود می آید.

عوامل دیگری مانند دینامیک شبکه نیز می توانند در جهت کاهش میرائی طبیعی یک ژنراتور مؤثر باشند. مهندسین قدرت به منظور رفع این مشکل اقدام به طراحی پایدار کننده های سیستم قدرت کرده اند. ایدة اصلی در طراحی PSS افزایش میرائی مود الکترومکانیکی ژنراتورها می باشد. بدین منظور کافی است PSS چنان طرح شود که توسط آن گشتاوری متناسب با سرعت در نقطه 1شکل (2-2) بوجود آمده گشتاور میرا کننده ذاتی سیستم را تقویت کند. در اینصورت معادله (2-1) به معادله زیر تبدیل می شود.

(2-4)

نقش DE انتقال ریشه های معادله به سمت چپ صفحه مختلط بوده که نتایجتاً کمبود میرائی مود الکترومکانیکی بهبود می یابد. در عمل به شیوه های متفاوتی می توان با فیدبک از ، چنین گشتاورهائی را ایجاد کرد.

مناسبترین روش جهت ایجاد این گشتاور اعمال یک سیگنال اضافی به سیستم تحریک است. (نقطة 2 شکل (2-2)) به منظور جبران تأخیرهای ناشی از قسمت های تحریک و میدان ماشین سنکرون، PSS به یک مدار تقوم فاز مجهز می شود. اندازة گشتاور میرا کننده بهره (گین) PSS کنترل می شود.

مراحل طراحی PSS:

طراحی مدار تقوم فاز و گین PSS بترتیب طی مراحل زیر صورت می گیرد:

1- محاسبه فرکانس مود الکترومکانیکی: با صرف نظر کردن از میرائی طبیعی در معادله (2-2)؛ معادله مشخصه مکانیکی به شکل زیر در آمده از حل آن فرکانس طبیعی غیر میرا بدست می آید.

(2-5)

2- طراحی جبران کننده فاز: ابتدا تابع انتقال بین و uE در حلقه الکتریکی محاسبه می شود. ((s) GE). میزان تأخیر فاز این تابع انتقال در ازاء بایستی توسط یک مدار تقدم فاز جبران شود. یک فرم متعارف برای جبران کنندة فاز عبارتست از:

(2-6)

که در آن K تعداد بلوک های مرتبه اول بوده و برای جبران زوایای بزرگ از دو بلوک استفاده می شود. برای T2 معمولاً یک مقدار مشخص انتخاب می گردد. تنها پارامتر باقیمانده مدار جبران کننده T1 است که به کمک تساوی زیر تعیین می شود.

(2-7)

3- طراحی گین:

مقدار DE در معادله (2-4) را می توان توسط گین PSS کنترل کرد. اگر گین PSS را KC­­­­ بنامیم این مقدار برابر است با:

(2-8)

از طرفی با صرف نظر از D و با توجه به فرم استاندارد معادله مشخصه داریم:

(2-9)

(2-10)

از حذف DE بین معادلات (2-10) و (2-8) مقدار گین PSS بر حسب ضریب میرایی بدست می آورید:

(2-11)

4- طراحی بلوک reset :

تحریک اضافی ایجاد شده توسط PSS بایستی به هنگام بروز پدیدة نوسانات با فرکانس کم فعال شده و پس از میرا شدن نوسانات به طور خودکار قطع شود. به عبارت دیگر PSS از نوع کنترل کننده های اضافی (Supplementary) سیستم قدرت بوده و بر عملکرد حالت دائمی بی تأثیر است.

با طرح یک تابع انتقال مرتبه اول این امر تحقق می یابد.

(2-12)

پارامترهای T چنان طراحی می شود که اندازه تابع انتقال در فرکانس طبیعی غیر میرا نزدیک به واحد باشد.

در پایان، جهت صحت محاسبات، معادلات PSS به مدل فضای حالت سیستم اضافه شده و مودهای الکترومکانیکی مجدداً محاسبه می شوند. شکل زیر بلوک دیاگرام یک PSS را نشان می دهد.

شکل (2-3) - بلوک دیاگرام PSS

2-5- مدلسازی سیستم قدرت چند ماشینه:

با تعمیم مطالب بخش پیشین به حالت چند ماشینه، ضرایب K1 تا K6 به ماتریس هایی با همین نام تبدیل می شوند. محاسبه آنها پس از آنالیز پخش بار شبکه؛ به صورت مشابه با محاسبات سیستم تک ماشینه انجام می شود [24]. در سیستم چند ماشینه مشابه حالت تک ماشینه؛ بلوک دیاگرام زیر را می توان برای ماشین i ام در نظر گرفت.

(شکل 2-4) بلوک دیاگرام ماشین سنکرون در یک سیستم قدرت چند ماشینه

نمایش فضای حالت در سیستم چند ماشینه با قرار دادن ماتریس های مناسبی در معادله (2-3) بجای پارامترهای اسکالر آن، حاصل می شود.

طراحی PSS در سیستم چند ماشینه: طراحی PSS کلاسیک بر اساس سیستم تک ماشین - شین بینهایت انجام می شود. بنابراین جهت طراحی PSS برای یک ماشین خاص نخست بایستی سیستم معادل تک ماشین شین بینهایت را برای آن ماشین بدست آورد. این امر بسادگی با قرار دادن راکتانس Xd به جای همة ماشین ها بجز ماشین مورد بحث میسر است [12]. پس از بدست آوردن این سیستم معادل، مشابه بخش قبل برای ژنراتور سنکرون پایدار کنندة مناسبی طراحی می شود.


دانلود تغذیه گاوهای پرواری با محتویات بستر طیور گوشتی

گاوها و سایر نشخوارکنندگان، حاوی دستگاه گوارش بی نظیری هستند که امکان استفاده از ضایعات و سایر محصولات جانبی را به عنوان منبعی برای جیره غذائی آنها ، مهیا می کند تغذیه گاوها عمدتاً بر مبنای استفاده از محصولات فرعی و سایر مواد مغذی هستند که منحصراً بوسیله نشخوارکنندگان قابل هضم باشد
دسته بندی دام و طیور
فرمت فایل doc
حجم فایل 17 کیلو بایت
تعداد صفحات فایل 17
دانلود تغذیه گاوهای پرواری با محتویات بستر طیور گوشتی

فروشنده فایل

کد کاربری 7169

گاوها و سایر نشخوارکنندگان، حاوی دستگاه گوارش بی نظیری هستند که امکان استفاده از ضایعات و سایر محصولات جانبی را به عنوان منبعی برای جیره غذائی آنها ، مهیا می کند. تغذیه گاوها عمدتاً بر مبنای استفاده از محصولات فرعی و سایر مواد مغذی هستند که منحصراً بوسیله نشخوارکنندگان قابل هضم باشد. یکی از خوراکهای غیر معمول که در تغذیه گاو قابل استفاده می باشد، فضولات بستر جوجه های گوشتی می باشد. در صنعت پرورش جوجه های گوشتی ، حجم قابل توجهی از فضولات بسترتولید می شود که به عنوان یک فراوری جانبی (by -product ( محسوب می شود. کاربرد اصلی فضولات مرغی، برای حاصلخیزی زمینهای زراعی می باشد. بهرحال استفاده از محتویات بستر جوجه های گوشتی صرفاً به عنوان کود، نمی تواند بازدهی مناسبی را به دنبال داشته باشد و در اصطلاح هزینه جایگزینی مواد مغذی که از سایر منابع غذائی فراهم می شود ، در مورد بستر جوجه های گوشتی زمانی که کود مرغی به جای اینکه در حاصلخیزی مزارع استفاده شود در تغذیه گاوهای گوشتی استفاده شود ، 4 برابر بیشتر است ( بازده استفاده از بستر طیور در تغذیه گاوهای گوشتی بیشتر از استفاده آن در حاصلخیزی مزارع است ) . محتویات بستر طیور منبع خربی از پروتئین ، انرژی ، مواد مغذی برای گاوهای آبستن و گاوهای داشتی است که ساختار صنعت پرورش گاو شیرده را در کشور تشکیل می دهند. بعلاوه از دیدگاه اقتصادی استفاده از محتویات بستر طیور را در تغذیه باعث حفظ مواد مغذی گیاهان می شود. این مواد مغذی شامل نیتروژن ، فسفر ، پتاسیم و مواد معدنی است که در مراتعی که کود گاوها تغذیه شده با بستر طیور پخش شده به فراوانی در خاک وجود دارد. یکی از مزایای بستر جوجه های گوشتی این است که تا مسافتهای طولانی قابل نقل و انتقال است، بدون اینکه ارزش اقتصادی آن تحلیل یابد. تولید کنندگان و دامداران ایالت آلباما برای کاهش هزینه های خوراک خود از این منبع عمده موجود، در تغذیه گاوهای خود استفاده می کنند. بیشتر دامداران ایالت آلباما با کاربرد این مواد جانبی در تغذیه گاوهای به مقدار قابل توجهی باعث کاهش هزینه خوراک شده اند. بهر حال بعضاً در بعضی تولید کنندگان و پرورش دهندگان گاو گوشتی یک بی میلی آشکار در رابطه با استفاده از بستر جوجه های گوشتی در تغذیه وجود دارد. چرا که افکار عمومی رشد و نمو سبزیجات و گیاهان را در فضولات حیوانی پذیرفته اند نباید فراموش کرد که فرایند استفاده از غذا در داخل بافتهای گیاهی ، فرایندی با پیچیدگیهای گیاهی کمتر نسبت به همان فرایند در دستگاه هاضمه گاو می باشد. بطوری که مواد غذائی مورد استفاده توسط گاو کاملاً کاملاً شکسته و تجزیه می شود و مورد فرآوری کامل قرار می گیرد. گاوی که روانه کشتارگاه می شود، 15 روز قبل باید تغذیه از بستر جوجه های گوشتی در آن قطع شده باشد در حالی که قارچ خوراکی که در بستری از کود پرورش داده شده است همان روز می تواند مستقیماً به فروشگاه خواربارفروشی فرستاده شود. بهرحال در صنعت پرورش گاو گوشتی باید از هر عملی که سلامتی گوشت تولیدی را زیر سئوال می برد ، اجتناب نمود. بستر طیور گوشتی چندین سال است که در تمامی مناطق کشور بدون هر گونه مشاهده اثرات جانبی مضرر برای انسان یا حیوان مصرف کننده آن ، مورد استفاده قرار گرفته است بعلاوه در ایالت آلباما ، استفاده از بستر جوجه های گوشتی عمدتاً در گاوهای آبستن و گاوهای داشتی استفاده می شد که کمتر چنین گاوهای مورد خرید و فروش یا کشتار قرار گرفته می شود. گزارشات متعدد حاکی از کاربرد ناچیز بستر جوجه های گوشتی در تغذیه گاوهای پرواری است و اگرچه درموارد نادر استفاده نیز 15 روز قبل از زمان کشتار گاو ، مصرف فضولات بستر در جیره غذائی قطع می شود بنابراین با این راهکار هر نوع خطر احتمالی تهدید کننده سلامت انسان ، کاملاً مرتفع خواهد گردید.