فایل بای | FileBuy

مرجع خرید و دانلود گزارش کار آموزی ، گزارشکار آزمایشگاه ، مقاله ، تحقیق ، پروژه و پایان نامه های کلیه رشته های دانشگاهی

فایل بای | FileBuy

مرجع خرید و دانلود گزارش کار آموزی ، گزارشکار آزمایشگاه ، مقاله ، تحقیق ، پروژه و پایان نامه های کلیه رشته های دانشگاهی

بررسی فرآیند تولید و کاربرد الیاف فوق ظریف و نانو

به منظور تولید الیاف نانو دو روش کلی وجود دارد، روش اول، تولید الیاف با استفاده از کاتالیزور می باشد که در این روش الیاف در بستر مخصوص یا محلول اختصاص داده شده منعقد می شوند، استفاده از کاتالیزور شناور برای تولید مناسب تر از کاتالیزور دانه دار شده می باشد زیرا میزان کاتالیزور موجود در بستر محلول همواره تحت کنترل می باشد روش دیگر تولید الکتروریسی
دسته بندی نساجی
فرمت فایل doc
حجم فایل 5960 کیلو بایت
تعداد صفحات فایل 148
بررسی فرآیند تولید و کاربرد الیاف فوق ظریف و نانو

فروشنده فایل

کد کاربری 8044

فهرست مطالب

عنوان صفحه

چکیده................................. 1

فصل اول : نانو تکنولوژی و تاریخچه تولید الیاف نانو

1-1)مقدمه............................. 3

2-1)نانو مواد و طبقه بندی آنها ....... 4

1-2-1)نانو فیلمهای نازک.......... 5

2-2-1)نانو پوششها................ 6

3-2-1)نانو خوشه ها............... 7

4-2-1)نانو سیمها ونانو لوله ها... 8

5-2-1)روزنه های نانو............. 9

6-2-1)نانو ذرات.................. 9

3-1)الیاف نانو........................ 10

4-1)تاریخچه تولید الیاف نانو.......... 11

فصل دوم : روشهای تولید الیاف نانو

1)تهیه الیاف نانو به روش کا تا لیزور شناور 18

اثر سولفور...................... 21

اثر دمای تبخیر ماده خام......... 23

اثر هیدروژن..................... 25

2)ریسندگی الکترو اسپینینگ............. 27

1-2)تئوری و فرایند ریسندگی الکترو اسپینینگ 27

2-2)ریسندگی الکترو اسپینینگ...... 29

1-2-2)ریسندگی الکترو اسپری... 29

2-2-2)ریسندگی الکترو مذاب.... 30

3-2-2)ریسندگی الکترو محلول... 32

3-2)شروع جریان سیال پلیمری وتشکیل مخروط تیلور 35

4-2)ناپایداری خمشی............... 36

5-2)ریسندگی الیاف نانو پلیمری.... 38

6-2)ساختار ومورفولوژی الیاف نانو پلیمری 38

7-2)پارامترهای فرایند و مورفولوژی لیف 39

1-7-2)ولتاژ اعمال شده......... 39

2-7-2)فاصله جمع کننده-نازل.... 40

3-7-2)شدت جریان پلیمر.......... 41

4-7-2)محیط ریسندگی............. 41

8-2)پارامترهای محلول............. 42

1-8-2)غلظت محلول.............. 42

2-8-2)رسانایی محلول........... 43

3-8-2)فراریت حلال.............. 43

4-8-2)اثر ویسکوزیته........... 44

9-2)خواص الیاف نانو.............. 45

1-9-2)خواص حرارتی............. 45

2-9-2)خواص مکانیکی............ 46

10-2)مزایای ریسندگی الکترو....... 46

11-2)معایب ریسندگی الکترو........ 48

12-2)بررسی اهداف ایده ال در ریسندگی الکترو 49

13-2)ریسندگی الیاف دو جزئی پهلو به پهلو 51

14-2)خصوصیات الیاف الکترو ریسیده شده 53

15-2)ریسندگی الکتریکی الیاف نانو از محلولهای پلیمری...................................... 54

16-2)ریسندگی الکترو الیاف پر شده با نانو تیوبهای کربن.................................. 58

17-2)تعیین خصوصیات مکانیکی و ساختاری الیاف کربن الکترو ریسیده شده................................ 68

فصل سوم : کاربردهای مختلف الیاف نانو و نانوتکنولوژی در صنعت نساجی

مقدمه................................. 84

1-3)الیاف نانو گرافیت و کربن.......... 85

2-3)نمونه بافت و تزریق دارو........... 85

3-3)الیاف نانو با خاصیت کا تا لیزوری.. 87

4-3)فیلتراسیون........................ 88

5-3)کاربرد های کامپوزیتی.............. 90

6-3)کاربرد های پزشکی.................. 91

1-6-3)پیوندهای شیمیایی............ 91

2-6-3)نمونه بافت.................. 92

3-6-3)پوشش زخم.................... 93

4-6-3)تزریق دارو.................. 94

5-6-3)دندانپزشکی.................. 94

7-3)مواد آرایشی....................... 95

8-3)لباس محافظتی...................... 96

9-3)کاربرد الکتریکی و نوری............ 97

10-3)کشاورزی.......................... 97

11-3)کاربردهای نانو تکنولوژی در نساجی. 98

1-11-3)دفع آب(ابگریزی)........... 98

2-11-3)محافظت در برابر اشعه uv.... 100

3 -11-3)ضد باکتری.................... 101

4-11-3)آنتی استاتیک............... 103

5-11-3)ضد چروک.................... 104

12-3)کنترل کیفیت در تولید کامپوزیتهای الیاف نانو الکترو اسپان................................. 105

توزیع یکنواختی الیاف نانو......... 106

سنجش الیاف بصورت اتوماتیک......... 108

آزمایش مقاومت در برابر عوامل محیطی 109

دستگاه آزمایش خمیدگی DL............... 110

13-3)الیاف نانو کامپوزیت الکترو اسپان برای تشخیص بیو لوژیکی اوره........................... 111

14-3)تاثیر افرودن الیاف کربن بر روی خواص مکانیکی و کریستالی شدن پلی پروپیلن................................ 116

ضمیمه ................................ 125

نتیجه ................................ 129

منابع و مآخذ.......................... 131

چکیده :

به منظور تولید الیاف نانو دو روش کلی وجود دارد، روش اول، تولید الیاف با استفاده از کاتالیزور می باشد که در این روش الیاف در بستر مخصوص یا محلول اختصاص داده شده منعقد می شوند، استفاده از کاتالیزور شناور برای تولید مناسب تر از کاتالیزور دانه دار شده
می باشد زیرا میزان کاتالیزور موجود در بستر محلول همواره تحت کنترل می باشد. روش دیگر تولید الکتروریسی می باشد که می توان نانو الیاف منفرد و ممتد را به میزان تولید بالا تهیه نمود. در این روش نانو الیاف پلیمری می توانند مستقیماً از محلول پلیمری به نانو الیاف پلیمری تبدیل شوند.

الکتروریسی ریسیدن نانو الیاف پلیمری تا قطر چند ده نانو متر، روشی است که تکیه بر نیروهای الکترواستاتیکی دارد. در این فرآیند، بین قطره ای از محلول پلیمری یا مذاب که در نوک نازل آویزان است و یک صفحه فلزی جمع کننده پتانسیل الکتریکی اعمال می شود. با بالا رفتن میدان الکتریکی قطره پلیمری شروع به کشیده شدن می کند تا اینکه این نیرو بر نیروی تنش سطحی قطره غلبه کرده و یک جت شارژ شده بسیار نازک از محلول پلیمری از سطح قطره خارج شده و به سمت فلز جمع کننده سرعت می گیرد. پس از طی مسیر کوتاهی دافعه متقابل شارژهای حمل شده در سطح جت، آنرا خم کرده و جت، مسیر خود را بصورت مارپیچ و حلقه ای ادامه خواهد داد. بدین ترتیب جت در فاصله کم نازل تا جمع کننده
می تواند مسیر بسیار زیادی را طی کرده، تا نیروهای الکتریکی آنرا هزاران بار کشیده و ظریف نمایند.

استفاده از این تکنولوژی های جدید ما را در انجام کارهایی که زمانی غیر ممکن
می نموده رهنمون می سازد، در سال های اخیر از این شیوه برای ساخت الیاف نانو در محدوده وسیعی از پلیمرها و در کاربردهای مختلف نظیر ساخت فیلترها، تقویت در کامپوزیت ها، کامپوزیت های شفاف، نانو الیاف کربن، نانو الیاف هادی، نانو الیاف توخالی، نانو الیاف سرامیکی، سنسورهای بسیار حساس، قالب برای رشد بافت زنده بدن، پر کردن بافت های آسیب دیده، بافت های ضد باکتری، حمل دارو، پوشش زخم، ماسک های آرایشی و ... به کار رفته است.

فصل اول

نانو تکنولوژی و تاریخچه تولید الیاف نانو

1-1 )مقدمه:

مفهوم نانوتکنولوژی جدید نمی باشد و از بیش از 40 سال پیش آغاز گردیده است، بر اساس تعریفNNI نانو تکنولوژی عبارت است از بکار بردن ساختارهایی با حداقل یک بعد در اندازه نانومتر برای ساخت مواد، وسایل و سیستم هایی با خواص بدیع و قابل توجه که مربوط به اندازه نانو آنها می باشد. نانو تکنولوژی نه تنها ساختارهای کوچک تولید می کند بلکه تکنولوژی ساخت پیشرفته ای می باشد که می تواند کنترل کم هزینه ای برای ساختار ماده ایجاد نماید. نانوتکنولوژی در بهترین صورت به این گونه توصیف می شود که فعالیت هایی هستند در حد اتمها و مولکول ها که کاربردهایی در دنیای واقعی دارند. قطعات نانو که به طور معمول در محصولات تجاری استفاده می شوند، در حدود یک تا صد نانومتر هستند. [1]

نانو تکنولوژی به صورت روزافزونی توجه دنیا را به خود جلب نموده چرا که به عنوان ارائه کننده پتانسیل بالایی از محدوده های وسیع، مصارف شناخته شده است. خواص جدید و
بی نظیر مواد نانو نه تنها دانشمندان و محققین بلکه تجارت را به خود جلب کرده که به دلیل پتانسیل بالای اقتصادی آن می باشد.[1]

همچنین نانو تکنولوژی پتانسیل تجاری واقعی برای صنعت نساجی دارد این امر به طور عمده به خاطر این واقعیت است که روش های مرسوم که برای دادن خواص مختلف به پارچه استفاده می گردند معمولا اثر دائمی ندارند و کارایی خود را بعد از شستشو و یا بر اثر پوشیدن از دست می دهند. نانو تکنولوژی می تواند دوام بالایی برای پارچه ها ایجاد کند چرا که قطعات نانو سطح بزرگی از نسبت مساحت به حجم و نیز انرژی سطحی بالایی دارند، بنابراین بستگی بیشتری با پارچه داشته و منجر به افزایش ماندگاری کاربردی آن می گردد. به علاوه پوششی از ذرات نانو روی پارچه بر خاصیت عبور هواو زیر دست آن اثری نمی گذارد بنابراین مزیت استفاده از نانو تکنولوژی در صنعت نساجی در حال افزایش است.خواصی که با استفاده از نانوتکنولوژی به پارچه داده می شود عبارتند از آب گریزی، ضد خاک،
ضد چروک، ضد باکتری، آنتی استاتیک، مقاومت در برابر اشعه یو وی، کند کردن توسعه آتش، بهبود در رنگ پذیری و غیره که در فصل های بعدی به آنها اشاره خواهد شد.[1]

2-1 )نانومواد:

مواد نانو ساختار در دهه گذشته به علت داشتن رفتار و ویژگیهای برجسته مورد توجه وسیع جامعه علمی و صنعتی جهان قرار گرفته است. ماده نانوساختاری به هر ماده ای اطلاق
می شود که حداقل یکی از ابعاد آن در مقایس نانومتر(زیر 100 نانومتر) باشد این تعریف صریحا انواع بسیار زیادی‌از ساختارها اعم از ساخته‌دست بشر یا طبیعت را شامل می شود.[1]

طبقه بندی نانو مواد: (Classification of Nanomaterials) 1- نانو فیلم های لایه نازک (Nano Layer Thin Films)
2- نانو پوششهاNano Coatings) (
3- نانو خوشه ها (Nano Clusters)

4- نانو سیم ها و نانو لوله ها(Nano Tubes & Nano Wires)
5- روزنه های نانو (Nano Pores)
6- نانو ذرات (Nano Particles ) در این بخش به معرفی هر گروه از این طبقات می پردازیم:

1-2-1) نانو فیلم های لایه نازک : (Nano Layer Thin Films)

در دنیای کنونی اصلاحات سطحی به یک فرآیند مهم و اساسی تبدیل شده است. در سه دهه گذشته سطوح و لایه های روی آن ها و پوشش دهی سطوح، افزایش کارایی و محافظت سطوح را به دنبال دارد. در این مورد روشهایی شامل ایجاد لایه های نازک یا پوشش ها بر روی سطوح موجود می باشند که به این ترتیب یک سطح جدید ساخته می شود. رسوب یک لایه نازک (نانو لایه) برای پوشش دهی در اکثر صنایع جایگاه مهمی یافته است. در واقع نانولایه ها فیلم های بسیار نازک و نانو پوششها سطح جدیدی از فناوری لایه های نازک
می باشند. نانو لایه ها باعث افزایش ارزش افزوده زیادی برای صنعت پوشش ها می شوند. نانو لایه ها دارای یک ساختار نانوذره ای می باشند که این ساختار یا از توزیع نانو ذرات در لایه ایجاد می شود و یا به وسیله یک فرآیند کنترل شده یک نانوساختار در حین رسوب ایجاد می شود. با افزایش لایه ها می توان طبقاتی از لایه های دارای ضخامت یک مولکول ایجاد کرد و ماده روکش شده هم خود می تواند به عنوان زیر لایه ای برای لایه دیگری از یک ترکیب متفاوت باشد. تابه حال چندین راه کار متفاوت برای خلق فیلم های فلزی و سرامیکی ایجاد شده است ولی معمولا شرایطی دارند که در آن مولکول های عالی تخریب می شوند. یکی از روش های ایجاد این لایه های نازک، لیتوگرافی می باشد که جدیداً به نانولیتوگرافی مشهور شده است چون توانایی ایجاد لایه های نانومتری را پیدا کرده است. قابل ذکر است که نانولایه ها در الکترونیک کاربرد زیادی را پیدا کرده اند. یکی از بزرگترین زمینه های کاربردی در فیلم های نازک استفاده از این نانولایه ها در اجزا و قطعات الکترونیکی، نوری و الکترواپتیکی است. همانند زیر لایه ها، خازن ها،قطعات حافظه،آشکار سازی های مادون قرمز و راهنماهای موجی. [1]

2-2-1) نانو پوششها: Nano Coatings) (

پوششها دارای کاربردهای مختلف و متنوعی می باشند. پوشش ها برای محافظت، افزایش یا تزیین محصولاتی چون شیشه ها، فلزات، پلاستیک ها، کاغذ، کفشها، عینک های آفتابی، لوازم ورزشی، مبلمان، وسایل آشپزی، آلات پزشکی، الکترونیک و اتومبیل ها به کار می روند با این وجود هم پوشش ها و هم سطوحی که در مورد پوشش ها به کار می روند در معرض آسیب هایی از محیط اطراف مثل باران، برف، نمک ها ، رسوب های اسیدی، اشعه ماوراء بنفش نور آفتاب و رطوبت می باشند. ضمنا پوشش ها قابلیت خش برداشتن، تکه تکه شدن و یا آسیب دیدگی در زمان استفاده ، ساخت و حمل ونقل را دارند. با یافتن راههایی می توان از آسیب دیدن روکش ها جلوگیری کرد. همانطور که گفته شده فناوری نانو قادر به جلوگیری از خش برداشتن، تکه تکه شدن و خرده شدن روکش ها می باشد. از موارد استفاده نانو روکش ها
می توان به روکش های ضد انعکاس در مصارف خودرو سازی و سازه ای، روکش های محافظ (ضد خش، غیرقابل رنگ آمیزی و قابل شستشو آسان) و روکش های زینتی اشاره کرد. فناوری های روکش دهی پیشرفته همانند مواد مبتنی بر نانو ذرات سرامیکی می تواند منجر به مقاومت حرارتی بهبود یافته ومصارفی با مقاومت حرارتی بالاتر شود.[1]

از کاربرد این روکش ها در صنایع خودرو سازی و حمل و نقل می توان به نانوروکش های سرامیکی که موجب پایداری حرارتی و مقاومت به فرسایش در قطعات موتور می شوند، اشاره کرد.[1]

3-2-1 ) نانو خوشه ها: (Nano Clusters)

در اوایل دهه 80 میلادی دانشمندان فیزیک کشف کردند که اتم های گازی، فلزی به شکل حباب های پایدار وبا تعداد اتم های مشخصی مجتمع می شوند. در دهه 90 آنها اثر مشابهی را در کار بر روی سطوحی مشاهده کرده اند که اتم های گازی می توانند به شکل خوشه هایی با اندازه های ویژه روی سطح بچسبند. یک گروه با رهبری Qi- kue xueاز دانشگاه علوم چین سعی کردند که این فرآیند را با دقت بیشتر و با استفاده از اتم های سطحی سیلیکون به عنوان یک الگو کنترل کنند. آنها اتم های فلزی بر روی سطح بسیار منظم کریستال Si را بصورت بخار در آورده و با استفاده از میکروسکوپ SEM مشاهده کردند که خوشه یکنواخت در 5/1 تا 4 میلیمتر از سطح کریستال تشکیل شده است. همچنین مشاهده کردند که هر خوشه در نصف واحد شبکه کریستال Si تشکیل می شود و نیمی دیگر از کریستال را خالی می گذارد. با توجه به محاسبات انجام شده به این نتیجه رسیدند که اتم ها سطح را برای پیدا کردن مکانی که به کمترین مقدار انرژی برسند، جستجو می کنند. اگر خوشه ها دارای خاصیت آهن ربایی شوند می توانند برای وسایل، ذخیره اطلاعات که بسیار فشرده هستند و کاتالیست ها برای واکنش های شیمیایی استفاده شوند.[1]

4-2-1 )نانو سیم ها و نانو لوله ها:(Nano Tubes & Nano Wires) نانو ساختارهای فعلی همانند نانو سیم ها، نانو لوله ها و یا نانو میله ها از موادی همانند نیمه هادی ها، فلزات و یا کربن از طریق روش های مختلفی تولید می گردند. یکی از مشکلات بر سر راه تولید نانو لوله های کربنی خطی این است که می توانند در فرآیند تولید به صورت شکل های متعددی در آید. (منفرد، چند لایه، پر شده و یا اصلاح سطحی شده) . لفظ نانو لوله در حالت عادی در مورد نانو لوله های کربنی به کار می رود که مورد توجه فراوانی از سوی محققان در دهه 90 قرار گرفته است. این دسته از نانومواد خواص جالب توجهی را به همراه خود دارند. یک خصوصیت مشهور آنها استحکام کششی برجسته آنهاست که نزدیک به 100 گیگاپاسکال یعنی بیش از 100 برابر استحکام فولاد است. نانو لوله های کربنی دارای خواص الکتریکی جالبی نیز می باشند. آنها بسته به Chirality می توانند رسانا، نانو لوله های فلزی و یا نیمه رسانا باشند و به دلیل توانمندی آنها در نانو الکترونیک جامعه پژوهشی توجه فوق العادی به آنها مبذول داشته است. نانو لوله های کربنی تک دیواره در مصارف الکترونیکی با بیشترین توجه روبرو شده اند. نانو لوله های کربنی خواص برجسته حرارتی را نیز در جهت لوله ها و نه عمود بر آن نشان داده اند. [1]

از کاربرد نانو لوله های کربنی می توان به بیوسنسورها برای تشخیص قند خون استفاده کرد همچنین نانو لوله های کربنی به عنوان پر کننده ای برای نانو کامپوزیت ها استفاده می گردند.

ویژگیهای جدیدی بخصوص از لحاظ استحکام در کامپوزیت شاهد باشیم. امروزه نانو لوله های کربنی با روش تولیدی CVD از مقدار زیادی تا مقادیر چند گرمی به دست می آید.[1]

5-2-1 )روزنه های نانو : (Nano Pores)

مواد با روزنه هایی در محدودة نانو کاربردهای صنعتی جالبی را نشان می دهد. به علت ویژگیهای برجسته آنها با توجه به عایق حرارتی بودن، تحلیل مواد و کاربرد آنها به عنوان پر کننده هایی برای کاتالیزور در علم شیمی مورد توجه زیادی می باشند.این گروه از مواد پتانسیل بالایی در کاتالیست ها، عایق های حرارتی، موادالکترودی، فیلترهای محیطی و غشاها، به عنوان محل های تحویل داروی کنترل شده دارا می باشد.[1]

6-2-1) نانو ذرات: (Nano Particles)

آخرین دسته از نانو مواد ، نانو ذرات می باشد. نانو ذرات از مدتها قبل مورد استفاده بوده اند. شاید اولین موارد استفاده از آنها در لعاب ظروف سفالی چینی ها باشد. در سالهای اخیر پیشرفت های بسیار بزرگی در زمینه امکان ساخت نانو ذرات از مواد گوناگون و امکان کنترل شدید بر روی اندازه، ترکیب و یکنواختی آنها صورت گرفته است. نانو ذرات از دهها و یا صد ها اتم یا مولکول با اندازه ها و مورفولوژی های مختلف (آمورف، کریستالی، کروی شکل، سوزنی شکل و غیره) ساخته شده است. اغلب نانو ذرات که به طور تجاری مورد استفاده قرار می گیرند به شکل پودر خشک و یا به صورت دیسپرس های مایع می باشد. البته نانو ذرات ترکیب شده (آمیخته شده) در یک محلول آلی یا آبی که به شکل سوسپانسیون یا خمیری شکل است نیز مورد توجه می باشد. برای رسیدن به یک توزیع پایدار و همگن از نانوذرات باید مواد وعامل های شیمیایی همانند سطح فعال ها و دیسپرس کننده ها را به آن بیفزاییم.[1]

3-1 )الیاف نانو :

تولید فیلامت های مصنوعی با استفاده از نیروهای الکترواستاتیک بیشتر از یک صد سال شناخته شده است. فرآیند ریسندگی الیاف با کمک نیروهای الکترواستاتیک به عنوان ریسندگی الکترو شناخته می شود. اخیرا نشان داده شده است که فرآیند ریسندگی الکترو قادر به تولید الیاف در محدوده کمتر از میکرون می باشد. ریسندگی الکترو توجه زیادی را در دهه اخیر نه تنها به دلیل قابلیت ریسندگی انواع گوناگون الیاف پلیمری به دست آورده است بلکه به دلیل پایداری در تولید الیاف در محدوده کمتر از میکرون نظرها را نیز به خود جلب کرده است. در علم لیف الیاف با قطرهای کمتر از 100 نانو معمولا به عنوان الیاف نانو طبقه بندی می شوند. این الیاف با روزنه های کوچکتر و سطح تماس بیشتر از الیاف معمولی کاربردهای زیادی را در نانو کاتالیزور، پیوند بافت، پوشاک محافظتی ، فیلتراسیون و الکترونیک نوری دارند.[2]

فرآیند ریسندگی الکترو از میدان الکتریکی با ولتاژ بالا برای تولید جریان های باردار الکتریکی از محلول پلیمر یا مذاب استفاده می کند که در قسمت خشک کن به وسیله تبخیر حلال الیاف نانو تولید می شوند. الیاف که دارای بار زیادی هستند توسط میدان باردار شده و به سوی جمع کننده که می تواند یک سطح تخت و یا دیسکی در حال چرخش باشد تا الیاف را جمع کند حرکت می کنند در روش های ریسندگی معمولی الیاف در برابر مجموعه ای از نیروهای کششی، جاذبه ای، آیرودینامیکی، رئولوژیکی و اینرسی قرار می گیرند. در ریسندگی الکترو ریسندگی الیاف اساساً از طریق نیروهای کششی صورت گرفته و در جهت محور جریان پلیمر به وسیله بارهای القا شده در میدان الکتریکی به دست می آید. [2]

4-1) تاریخچه تولید الیاف نانو :

فکر استفاده از الکتریسیته ساکن برای حرکت سیال به 500 سال پیش برمی گردد [5]. عبارت ریسندگی الکترو از ریسندگی الکترواستاتیک گرفته شده است که ایده اصلی آن به بیش از 60 سال پیش باز می گردد . این فرآیند اولین بار به وسیله زلنی در 1914 مطالعه شد.[2]

سرآغاز ریسندگی الکترو به عنوان یک روش ریسندگی لیف را می توان به اوایل دهه 1930 نسبت داد. در سال 1934 فرمالز اولین اختراع خود را در ارتباط با فرآیند و وسایل تولید فیلامنت های مصنوعی با استفاده از بارهای الکتریکی به ثبت رسانید.[2]

شکل 1-1: دستگاه اختراعی فرمالز

فرآیند ریسندگی فرمالز شامل یک وسیله جمع کننده متحرک نخ می باشد تا نخ را تحت کشش مانند شرایط دیسک ریسندگی در ریسندگی معمولی جمع نمایند. فرآیند فرمالز
می توانست نخ های موازی را روی وسیله دریافت کننده به طور پیوسته باز کند. فرمالز در اولین ثبت اختراع خود ریسندگی الیاف استات سلولز را با استفاده از استون به عنوان حلال گزارش نمود. این روش برای خشک کردن کامل الیاف بعد از ریسندگی به دلیل فاصله اندک میان نواحی جمع آوری و ریسندگی با مشکل روبرو بود که منجر به ساختاری با شبکه تجمعی کمتر شد. در ثبت اختراع بعدی فرمالز روش اولیه خودش را برای غلبه بر مشکل فوق اصلاح نمود. در فرآیند اصلاح شده فاصله بین قسمت تغذیه و وسیله جمع کننده لیف را تغییر داد تازمان خشک شدن طولانی تری را برای الیاف الکترو اسپان فراهم نماید. در نتیجه در سال 1940 فرمالز روش دیگری را برای تولید شبکه کامپوزیتی لیف از مواد اولیه پلیمری ارائه کرد.[2]

در سال 1952 ونگات و نئوبائر توانستند جریان هایی با قطرهای یکنواخت با استفاده از ولتاژ بالا با قطری در حدود یک دهم میلیمتر تولید نمایند.در سال 1966 سیمونز دستگاهی جهت تولید منسوجات بی بافت فوق ظریف با وزن خیلی کم با نمونه های مختلف پلیمری با استفاده از ریسندگی الکترو اختراع کرد. در این دستگاه الکترود مثبت در داخل محلول پلیمری قرار داشت و الکترود منفی به کمربندی که منسوج بی بافت روی آن جمع آوری می شد وصل شده بود. او دریافت که الیاف حاصل از محلول های با ویسکوزیته پایین تمایل به کوتاه و نازک شدن دارند در صورتی که الیاف حاصل از محلول هایی با ویسکوزیته بالا نسبتا ممتد می باشند.[4]

در دهه 1960 مطالعات اساسی روی فرآیند تشکیل جت به وسیله تیلور آغاز گردید، در سال 1969 تیلور شکل قطره تولید شده در نوک سرنگ را مطالعه کرد.او نشان داد که به وجود آمدن این قطره در نوک سرنگ هنگامی که یک میدان الکتریکی به کار گرفته می شود، میسر شده که قطره مخروطی شکل بوده و جتها از نوک مخروط به بیرون جریان می یابند. این شکل مخروطی جریان بعدها به وسیله محققین دیگر «مخروط تیلور» نامیده شد . با بررسی مفصل در مورد مایعات مختلف تیلور مشخص کرد که زاویه ای 3/49 درجه ای برای ایجاد تعادل بین تنش سطحی پلیمر با نیروهای الکترواستاتیک مورد نیاز است.[2]

در سال های بعدی توجهات به مطالعه مورفولوژی ساختاری الیاف نانو معطوف گردید. محققین به ویژگی ساختاری الیاف و شناخت ارتباط بین الگوهای ساختاری و پارامترهای فرآیند توجه زیادی نشان دادند. پراش اشعه ایکس با زاویه گسترده (WAXD)، میکروسکوپ الکترونی (SEM)، میکروسکوپ الکترونی (TEM) و کالری متری پویشی دیفراکسیونی (DSC) به وسیله محققین برای تعیین ویژگی الیاف نانو الکترواسپان به کار رفت. در سال 1971 با مگارتن ریسندگی الکترو، میکرو لیف های اکریلیک را گزارش نمود که قطر آنها بین 100 تا 500 نانو بود. او محدوده های قابل ریسندگی محلول دی متیل فرمامید پلی اکریلونیتریل (PAN/DMF) را تعیین و وابستگی قطر لیف را به ویسکوزیته مشاهده نمود. لاروندو و ماندلی الیاف پلی اتیلن و پلی پروپیلن را از مذاب تولید نمودند که معلوم شد به طور نسبی از نظر قطر بزرگتر از الیاف محلول ریسیده شده می باشد. آنها نشان دادند که قطر با افزایش دمای ذوب کمتر می شود. [2]

در سال 1987 هایاتی تاثیر میدان الکتریکی، شرایط آزمایش و فاکتورهای موثر بر ثبات لیف را مورد مطالعه قرار داد. آنها نتیجه گرفتند که رسانایی مایع تنش عمده ای را در اختلال الکترواستاتیکی سطوح مایع ایفا می کندو نتایج نشان داد که سیال های دارای رسانایی زیاد با افزایش ولتاژ اعمال شده باعث ایجاد جریان های شدیدا ناپایدار می گردد که در جهت های مختلف جابجا می شوند.[2]

بعد از وقفه ای10 ساله جهشی عمده در زمینه تحقیق بر روی ریسندگی الکترو به واسطه پیشرفت علم در زمینه کاربردهای بالقوه الیاف نانو در حوزه های مختلف مانند مواد با بازدهی بالا ، فیلتراسیون، حفاظتی، مواد کاتالیزوی و مواد جذب کننده به وجود آمد. داشی و رنکر ویژگی های الیاف نانو پلی اتیلن اکساید (PEO) را به وسیله تغییر دادن غلظت محلول و پتانسیل الکتریکی اعمال شده مطالعه کردند. قطرهای جریان به عنوان تابعی از فاصله رئوس مخروط اندازه گیری شد و آنها مشاهده کردند که قطر جریان با افزایش فاصله کمتر می گردد. آنها دریافتند که محلول PEO با ویسکوزیته کمتر از cp 80 بیش از اندازه رقیق بوده تا بتواند جتی پایدار را تشکیل دهد و محلول با ویسکوزیته بیشتر از [1]cp 4000 بیش از اندازه غلیظ بوده تا بتواند الیاف را تشکیل دهد.[2]


بررسی الیاف مصنوعی

اساس روشهای تولید الیاف مصنوعی، ذوب رسیی، خشک سبی و تدریسی، با استفاده از نیروهای مکانیسی می باشد روش electrospining با به کاربردن نیروی الکتریسیته، روش کاملاً متفاوت در تولید الیاف مصنوعی می باشد با اعمال ولتاژ زمانی که نیروی الکتریکی به کشش سطحی و نیروی دیسکوالاستیک غلبه کند، جریان jet که دارای بار الکتریکی می باشد، از محلول پلیمر خارج می شود ا
دسته بندی نساجی
فرمت فایل doc
حجم فایل 28 کیلو بایت
تعداد صفحات فایل 17
بررسی الیاف مصنوعی

فروشنده فایل

کد کاربری 8044

الیاف مصنوعی

1-1- مقدمه

اساس روشهای تولید الیاف مصنوعی، ذوب رسیی، خشک سبی و تدریسی، با استفاده از نیروهای مکانیسی می باشد. روش electrospining با به کاربردن نیروی الکتریسیته، روش کاملاً متفاوت در تولید الیاف مصنوعی می باشد. با اعمال ولتاژ زمانی که نیروی الکتریکی به کشش سطحی و نیروی دیسکوالاستیک غلبه کند، جریان jet که دارای بار الکتریکی می باشد، از محلول پلیمر خارج می شود. این جریان (jet) توسط نیروی الکتریکی شتاب می گیرد و الیاف به فرم خرج بی‌بافت بر روی نهر متصل به زمین، جمع می شوند. اول پاراگراف در روش ele، الیاف با قطر نانومتر تولید می شود که به واسطه قطر کوچک، سطح مخصوص الیاف بیشتر خواهد (رنج سطح مخصوص از در الیاف بار قطر nm500 تا 1000 در الیاف با قطر nm50 می باشد). بررسیهای انجام شده برروی نفوذپذیری خرج بی بافت، قابلیت کاربرد آنها را به عنوان فیلترها و غشا نشان می دهد. در این روش اندازه خلل زوج الیاف نیز قابل کنترل می باشد. واقعاً می توان روش ele را microprocess نامید. اگر به نظریه تولید الیاف به روش ele حدوداً به 60 سال بیش بر می گردد ولی همچنان محدودیتهایی از نظر اطلاعات علمی راجع به اساس تئوری در این روش همچنان باقی مانده است.

در پروژه ابتدا سعی شده باروری بر مقالات اصول ele بیان گردد و سپس در ادامه به شرح آزمایشات پرداخته می شود.


1-2- تاریخچه

قبل از اینکه روش electrosping برای تولید الیاف مصنوعی مطرح شود، افراد زیادی پدیده ele را بررسی نموده اند. Lord Raley بیش از 100 سال قبل نشان داد، هنگامیکه نیروی الکترواستاتیکی برکنش سطحی غلبه کند یک جریان از مایع ایجاد می‌شود.

در سال 1952 Vonnegut و Neubaver جریانهای یکنواختی از نظرات دارای باد با قطر حدود mm1/0 با اعمال ولتاژ 5 تا ele10 بوجود آورند. پس دو دانشمند دیگر توانستند نیروی با استفاده از الکترواستاتیک امدلیون روغن در آب را با نظری در مورد 5/0 تا 6/1 تولید شود.

در سال 1960 Taglor فروپاشی قطرات آب، در میدان الکتریکی را بررسی نمود. نوشته های Taylor ثابت می کند که نصف زاویه نوک مخروط تشکیل شده در ele نزدیک به 3/49 می باشد.

اما ele محلول ماکرومولکولها را می توان در سال 1934 بررسی نمود، هنگامیکه برای تولید الیاف مصنوعی به دلیل نیروی الکترواستاتیکی توسط Formhals اختراع شد. الیاف مورد نظر، از محلول استات سلولز تولید می شده است.

ولتاژ مورد نیاز در ارتباط با خواص محلول مورد نظر، از قبیل وزن مولکولی و ویسکوزیته می باشد. دو دانشمند اگر با اصلاح این دستگاه الیاف را با پایداری بیشتری تولید کردند در این روش از یک تسمه پیوسته برای جمع آوری استفاده شده است.

توسط Bornat و Later دستگاه ele دیگری ثبت شد که یک لایه قابل برداشت بر روی یک میله درمان چرخش تولید می شده است. که محصول لوله شکل بدست آمده از این روش ele با منحلول پلی اورتان می تواند به عنوان رگ مصنوعی مورد استفاده قرار گیرد. در سال 1971 ele الیاف اکربلیک با قطر کمتر از 1 از محلول دی متیل فرمامید، توسط Baumgarten تولید کرد.

ارتباط بین قطر الیاف، طول جریان (jet) و ویسکوزیته و آهنگ شارش (flow rate) محلول را بدست آورد. در سال 1981 دو دانشمند موفق به تولید الیاف پلی اتیلن و pp از محلول مذاب بدون ا ستفاده از نیروی مکانیکی شدند. Doshi از محلول PEO در آب الیافی با قطر 05/0 تا 5 تولید کرد. اولین شرایط پروسه و مورفولوژی الیاف را بررسی نمود. Srinivasan توسط ele الیاف رسیده شده از مایع کریستال پلی آرامید، پلی فنیلن ترفتالامید و پلیمر رسانای، پلی آنیلین در اسیدسولفوریک را تولید کرد.

و او پراش الکترون الیاف رسیده شده پلی آرامید و بعد از ثبت الیاف در دمای 400 را مشاهده نمود در سالهای اخیر تحقیقات زیادی برای درک پروسه ele و خصوصیات nanofihez توسط coworkers و renker انجام شده است.

کاربرد nanofilez در فیلترها و لباسهای محافظتی می باشد و همچنین به عنوان سلولهای ساختاری در اعضای مصنوعی بینان برای آنزیمها و کاتالیزورها و تقویت کاسپوزیتها به کار می رود.


1-3- تعاریف اولیه

1-3-1- ویسکوزیته

مقدار انرژی تلف شده توسط سیال در حال حرکت. به خاطر مقاومت در مقابل نیروی برشی اعمال شده، ویسکوزیته نامیده می شود. مقاومت سیال به دلیل نیروی چسبندگی لایه های مختلف سیال می باشد که با اعمال نیروی برشی باعث جدا شدن لایه های مختلف با سرعتهای متفاوت می گردد. مقدار کار انجام شده مقیاس با تنش برشی اعمال شده (z) و سرعت تغییر شکل برشی نماد می باشد. ایستادگی در مقابل لیلان محلول را نیز ویسکوزیته می نامند. در این حالت جدا شدن لایه های مختلف سیال وجود ندارد، ولی ویسکوزیته مناسب با خصوصیات ذاتی مولکول پلیمر، وزن مولکولی، اندازه مولکولی و شاخه های جانبی و غیر پلیمر، می باشد.

در این پروژه با ثابت فرض کردن خصوصیات ذاتی پلیمر، ویسکوزیته را مقاومت سیال در مقابل نیروی برشی تعریف می کنیم.

نیروی برشی

سرعت برشی

ویسکوزیته نتوتنی یا دینامیکی

اگر چگلی سیال را فرض کنیم ویسکوزیته سینماتیکی برابر خواهد بود:


بررسی عوامل موثر بر عایق حرارتی شدن پرده

کاهش ذخایر انرژی و نگرانی مشتری به خاطر هزینه‌های انرژی به افزایش نیاز برای تحقیق در حوزه حفظ انرژی منجر شده است حفظ انرژی در ساختمان‌ها، حفظ انرژی گرمایی همراه با استفاده کم از انرژی را شامل می‌شود و تا حدودی با حداقل کردن جریان گرمایی بین محیط‌های بیرون و داخل بدست می‌آید مطالعات کمی در مورد نقش وسایل نساجی خانگی در حفظ انرژی خانه وجود داشته است
دسته بندی نساجی
فرمت فایل doc
حجم فایل 927 کیلو بایت
تعداد صفحات فایل 220
بررسی عوامل موثر بر عایق حرارتی شدن پرده

فروشنده فایل

کد کاربری 8044

فهرست مطالب

عنوان صفحه

مقدمه................................... 1

1-1- اهداف.............................. 4

1-2- فرضیه ها........................... 5

1-3- پنداشت ها (گمان ها)................ 6

1-4- محدودیت ها......................... 6

1-5- تعاریف............................. 7

فصل دوم................................. 10

مرور مقاله.............................. 10

2-1- حفظ انرژی.......................... 11

2-2- تئورسی انتقال حرارت................ 12

2-3- طراحی و عملکرد پنجره............... 14

2-4- ویژگی های بافت، لیف (رشته) وپارچه.. 17

2- 5- نشت پذیری هوا و تخلخل............. 19

2-5-1- رابطه بین نشت پذیری هوا و تخلخل.. 21

2-5-2- تخلخل و هندسه پارچه.............. 22

2-5-3- فاکتورهای پارچه و لیف مرتبط با نشت پذیری هوا 27

2-5-4- لایه‌های چندگانه پارچه............. 29

2-6- رطوبت.............................. 30

2-7- پرده‌ها و دیگر وسایل عایق‌بندی پنجره. 32

2-8- ابزار سازی......................... 63

فصل سوم : رویکرد......................... 67

3-1- پارچه‌ها............................ 68

3-2- ویژگی‌های پارچه..................... 69

3-3- شکل هندسی پرده‌ها................... 75

3-3-1- تعیین سطح اسپیسر................. 81

3-3-2- تعیین حجم........................ 90

3-3-3- مساحت سطح پارچه.................. 91

3-4- انتقال حرارت....................... 92

3-5- طرح تجربی (آزمایشی)................ 94

3-6- تحلیل آماری ....................... 97

فصل چهارم............................... 99

نتایج و بحث ............................ 99

4-1- مقدمه.............................. 100

4-2- ضریب گسیل لایه‌های تکی .............. 101

4-2-1- تضادها براساس نوع بافت........... 109

4-2-2- تفاوت‌ها براساس گشادی بافت........ 110

4-2-3- تفاوت‌های براساس رنگ پارچه ....... 111


4-3- آزمایش‌های دو لایه................... 112

4-3-1- نوع پارچه........................ 116

4-3-2- فشردگی پرده...................... 117

4-3-3- فشردگی آستری..................... 117

4-3-4- فاصله سه بعدی.................... 118

4-3-5- ترکیب فشردگی پرده و فشردگی آستری. 119

4-3-6- ترکیب فشردگی پرده، فشردگی آستری و فاصله گذاری 121

4-3-7- رطوبت نسبی....................... 123

4-3-8- خلاصه نتایج چند لایه............... 124

4-4- ویژگی‌های فیزیکی.................... 124

4-4-1- مدل‌های تک لایه.................... 125

4-4-2- مدل‌های چند لایه................... 129

4-4-3- ویژگی‌های منحصر بفرد.............. 131

4-5- خلاصه............................... 132

فصل پنجم ............................... 137

خلاصه، بحث‌ها و توصیه‌ها................... 137

5-1- خلاصه و نتایج....................... 138

5-2- توصیه‌ها............................ 141


عنوان صفحه

2-1. جدول : ویژگی های فیزیکی پارچه..... 34

2-4. جدول : مقدار با عدد a DF = فشردگی پرده به درصد و b LF = فشردگی آستر............................. 41

2-10. جدول. دو عامل تحلیل واریانس برای پارچه‌ها در لایه‌های مجزا.................................... 42

2-13. جدول ضریب گسیل، با نوع بافت و رطوبت نسبی 42

2-23. جدول مقادیر ضریب گسیل با فشردگی پرده و فشردگی آستری................................... 44

2-24. جدول مقادیر ضریب گسیل با فشردگی پرده، فشردگی آستری و فاصله گذاری................................. 45

2-25. جدول ضریب گسیل توسط پارچه و فشردگی پرده 46

2-26. جدول ضریب گسیل توسط پارچه و فشردگی آستر 46

2-27. جدول ضریب گسیل با پارچه و فاصله گذاری 47

2-28 .جدول ضریب گسیل با پارچه و رطوبت نسبی 47

2-40. جدول مقادیر ضریب گسیل ـ فاز 2 (لایه‌های دوگانه) 53

3-5 . جدول مساحت سطح پارچه............. 91

3-6. جدول مساحت سطح پارچه در وضعیت (مختلف) 91

4-7. جدول مقادیر ضریب گسیل پارچه‌ها (تک لایه‌ها، صاف) 105

4-14. جدول ضریب گسیل‌ها توسط گشادی بافت..... 108

4-15. جدول ضریب گسیل‌ها توسط گشادی بافت و رطوبت نسبی 108

4-16. جدول ضریب گسیل‌ها توسط رنگ............. 108

4-17. جدول ضریب گسیل‌ها توسط گشادی بافت و رطوبت نسبی 110

4-18. جدول ضریب گسیل‌ها توسط رنگ............ 111

4-19. جدول تفاوت‌های پارچه‌های تک لایه براساس رنگ 112

4-20. جدول میانگین‌های تأثیرات عامل اصلی برای مدل‌های چند لایه 114

4-21. جدول تحلیل‌های واریانس برای پارچه‌های لایه‌دار شده 115

4-31. جدول تحلیل‌های رگرسیون برای پارچه‌های تک لایه مدل 1 125

4-32. جدول تحلیل‌های رگرسیون برای پارچه‌های تک لایه، مدل 2 127

4-33. جدول تحلیل‌های رگرسیون برای پارچه‌های تک لایه ـ مدل 3 127

4-34. جدول تحلیل رگرسیون برای پارچه‌های تک لایه ـ مدل 4 128

4-35. جدول تحلیل‌های رگرسیون برای پارچه‌های تک لایه ـ مدل 5 129

4-36. جدول تحلیل‌های رگرسیون برای پرده‌های چند لایه ـ مدل 1 130

4-37. جدول تحلیل‌های رگرسیون برای پرده‌های چند لایه ـ مدل 2 131

4-38. جدول تحلیل‌های رگرسیون پرده‌های چند لایه ـ مدل 3 131

5-39.جدول مقدار ضریب گسیل ـ فاز یک (تک لایه). 137



2-2 نمودار : تراوش پذیری هوا از لایه های متوالی پارچه G 36

2-5 نمودار:ساختار منحنی دارای فشردگی 50 درصدی 37

2-6 نمودار:تعیین فشردگی 50 درصدی .......... 37

2-11 نمودار:هندسه فاصله دارای فشردگی 50 درصد 38

2-12 نمودار:بخش A12 از فاصله اندازفشردگی 50 درصد 39

2-13 نمودار:هندسه فاصله انداز دارای فشردگی 100درصد 40

2-31 نمودار.ضریب گسیل حرارت پارچه‌های تکی در سطوح متفاوت رطوبت 42

2-32 نمودار.ضریب گسیل انواع بافت با سطوح رطوبت نسبی 42

2-33 شکل .ضریب گسیل پارچه‌های پرده لایه شده با پارچه آستری 43

2-34 نمودار.تفاوت‌ها در ضریب گسیل بین پارچه‌ها با فشردگی پرده 47

2-35 نمودار.تأثیر فشردگی آستری روی ضریب گسیل 48

2-36 نمودار.تأثیر فشردگی استری روی ضریب گسیل پارچه‌های مختلف پرده‌ای...................................... 49

2-37 نمودار. ضریب گسیل پرده‌ها با فاصله‌گذاری 50

2-38 نمودار.تأثیر فاصله گذاری بین پارچه‌های روی ضریب گسیل 51

2-39 نمودار. تفاوت‌ها در ضریب گسیل بین پارچه‌ها با رطوبت نسبی 52

3-1 نمودار . فاکتورهای پارچه............... 68

3-3 شکل فاکتورهای شکل....................... 76

3-7 شکل. فشردگی صد در صد.................... 78

3-8 شکل ایجاد کمان دارای فشردگی 100 درصد.... 78

3-9 شکل اسپیسر آستری........................ 79

3-10 شکل. اسپیسرهای اولیه و ثانویه.......... 80

3-14 شکل. بخش A1 از اسپیسر دارای فشردگی 100 درصد 84

3-15 شکل. بخش A2 از اسپیسر دارای فشردگی 100 درصد 84

3-16 شکل. اسپیسر مورد استفاده برای فشردگی آستری 50 درصد 85

3-17 شکل. اسپیسرمورد استفاده برای فشردگی پرده 50 درصد با آستری صاف وفاصله گذاری صفر....................... 85

3-18 شکل. اسپیسر مورد استفاده برای فشردگی پرده 50 درصد با آستری صاف و فاصله گذاری 4/1 اینچ............ 85

3-19 شکل. اسپیسر مورد استفاده برای فشردگی پرده 50 درصد با آستری صاف و فاصله گذاری2/1 اینچ............. 85

3-20 شکل. اسپیسر مورد استفاده برای فشردگی آستری 100 درصد 85

3-21 شکل. اسپیسر مورد استفاده برای فشردگی پرده 100 درصد با آستری صاف و فاصله گذاری صفر................. 86

3-22 شکل. اسپیسر مورد استفاده برای فشردگی پرده 100 درصد با آستری صاف و فاصله گذاری 4/1 اینچ............ 86


3-23 شکل. اسپیسر مورد استفاده برای فشردگی پرده 100 درصد با آستری صاف و فاصله گذاری2/1 اینچ............. 86

3-24 شکل. اسپیسر برای سطوح یکسان فشردگی پرده و فشردگی آستری 86

3-25 شکل. کمان‌های اسپیسر مورد استفاده برای سطوح یکسان فشردگی پرده و فشردگی آستری............. 87

3-26 شکل. کمان‌های اسپیسر فشردگی 100 درصد.... 88

3-27 شکل. پنجره آزمایشی..................... 93

3-28 شکل. طرح تحقیق ـ فاز یک................ 95

3-29شکل. طرح تحقیق ـ فاز دو................. 96

4-30 شکل ضریب گسیل حرارتی پارچه‌های تک لایه... 105

مقدمه

کاهش ذخایر انرژی و نگرانی مشتری به خاطر هزینه‌های انرژی به افزایش نیاز برای تحقیق در حوزه حفظ انرژی منجر شده است. حفظ انرژی در ساختمان‌ها، حفظ انرژی گرمایی همراه با استفاده کم از انرژی را شامل می‌شود و تا حدودی با حداقل کردن جریان گرمایی بین محیط‌های بیرون و داخل بدست می‌آید. مطالعات کمی در مورد نقش وسایل نساجی خانگی در حفظ انرژی خانه وجود داشته است. اگرچه پنجره‌های دارای عایق بندی خوب پیدا شده‌اند که انتقال گرما بین محیط بیرون و داخل را کاهش می‌دهند، اما نقش پرده‌های ضخیم در عایق‌بندی پنجره به طور مفصل بررسی نشده‌اند، مخصوصاً مواردی که به تعدیل رطوبت نسبی داخل مربوط می‌شوند.

پنج درصد از مصرف کلی انرژی ملی ما، از طریق پنجره‌های ساختمانی به هدر می‌رود. اخیراً تکنیک‌های حفظ انرژی خانه، در کاهش اتلاف انرژی از طریق پنجره‌ها دارای کارایی کمتری نسبت به تکنیک‌های حفظ انرژی از طریق دیوارها، سقف‌ها و کف‌ها بوده‌اند.

اگرچه اتلاف کلی انرژی از یک خانه کاهش می‌یابد زمانی که به خوبی عایق‌بندی شود ولی با این حال درصد واقعی اتلاف انرژی از طریق پنجره‌ها افزایش می‌یابد. انواع خاصی از طرح‌های پنجره در کاهش اتلاف انرژی مؤثر هستند. با این وجود، این کاهش هنوز با کاهش اتلاف انرژی از طریق دیوارهای دارای عایق مناسب برابر نیست.

اگر به خوبی سامان‌دهی شود، پرده‌های پنجره می‌توانند به کاهش اتلاف انرژی از طریق پنجره‌ها کمک کنند. همچنین آنها مزیت انعطاف‌پذیری را نیز دارد که به سادگی می‌توان آنها را باز کرد تا از انرژی خورشیدی استفاده حداکثر را برده یا اینکه بسته شوند تا اتلاف انرژی را کاهش دهند.

پرده‌ها می‌توانند بر حفظ انرژی به وسیله کاهش اتلاف حرارتی زمستان و بدست آوردن حرارت تابستان تأثیر گذارند. بررسی‌ها نشان داده‌اند که توانایی وسایل سایبان پنجره برای مسدود کردن جریان هوا، تنها ویژگی مهم در تأثیر بر مقدار کلی عایق بندی می‌باشد. با این وجود اگر پرده‌ها با مدل درزبندی کاربردی و کارایی طراحی شوند.

تا اتلاف حرارت همرفتی را کنترل کنند، اهمیت بافت دیگر، ویژگی‌های ساختاری و تاروپود به میان می‌آید. در حالی که چنین مطالعه مجزا بر ویژگی‌های عایق بندی مختلف پرده‌ها و دیگر وسایل سایبان متمرکز شده‌اند، اهمیت نسبی هر یک از این فاکتورها مشخص نشده‌اند.

رطوبت‌های نسبی داخل به طور فصلی فرق می‌کنند. براساس نوع سیستم گرمایی مورد استفاده، رطوبت‌های نسبی بسیار پایین در زمستان متحمل می‌شوند. با این وجود، پیشرفت‌ها در تکنولوژی ساخت و ساز که از تأکید اخیر بر راندمان گرمایی نشات گرفته، به مقادیر کم نشت و هواکشی در ساختمان‌ها منجر شده است. علاوه بر تأثیر نامطلوب کیفیت هوای داخل وضعیت دیگری که از ترکیب نشت کم و دماهای پایین داخل نشات می‌گیرد افزایشی در رطوبت نسبی داخل اغلب تا نقطه تقطیر در ساختمان می‌باشد. پیچیدگی بیشتر مسئله، رطوبت نسبی داخل را از طریق استفاده از دستگاه‌های مرطوب کن مکانیکی افزایش می‌دهد و به عنوان محافظتی در مقابل سرمای زمستان توصیه می‌شود.

خواه به خاطر نشت کم، دمای پایین داخل یا استفاده از دستگاه‌های مرطوب‌کن فنی، تغییرات رطوبت نسبی بر ویژگی‌های عایق بندی پارچه‌های پرده تأثیر خواهد گذاشت.

رابطه بین خصوصیات جذب رطوبت از یک بافت و ویژگی‌های عایقی آن در سطوح مختلف رطوبت نسبی توضیح داده نشده است. در حالی که انتظار می‌رود که پرده‌های دارای بافت‌های هیدرولیک واکنش بیشتری به تغییر در رطوبت نسبی نسبت به بافت‌هایی نشان خواهند داد از بافت‌های هیدروفوبیک تشکیل شده‌اند، اما تأثیر این واکنش روی ویژگی‌های عایق پرده در این مقاله گزارش نشده است.

تعیین انرژی بهینه که خصوصیات پرده‌ها را حفظ می‌کند ضروری است تا پرده‌ها را توسعه دهند تا زمانی که در ترکیب با پنجره‌های خوب عایق‌بندی شده استفاده می‌شوند، اتلاف انرژی پنجره را به اندازه اتلاف انرژی از طریق دیوارها کاهش خواهد داد، در حالی که مزایای مطلوب پرده‌ها و پنجره‌ها شامل انعطاف‌پذیری، قابل مشاهده بودن و حرارت خورشیدی را موقع نیاز و وجود حس زیباشناسی را افزایش می‌دهد.

این پروژه بر روابط میان انتقال حرارت، رطوبت نسبی و چند بافت و پارچه و ویژگی‌های ساختاری پرده‌ها متمرکز است. متغیرهای مستقل نوع بافت (هیدروفیلیک یا هیدروفوبیک)، رنگ، ساختار پارچه (باز بودن بافت) فشردگی بافت پارچه رویی، و پارچه آستری و فاصله بین روی پارچه پرده و آستر را شامل می‌شوند. متغیر وابسته مقدار انتقال گرمایی از پرده به اضافه پنجره می‌باشد. مقادیر انتقال از مدل‌های پرده که ترکیبات سطوح مختلف هر یک از متغیرها را دارا می‌باشد، به دو روش رطوبت نسبی مختلف اندازه‌گیری می‌شود.

- اهداف

اهداف کلی این تحقیق عبارت بودند از:

1. تعیین نقش رطوبت و هیدروفیلیسیتی بافت در جریان گرمایی از طریق دستگاه‌های پارچه آستری و پرده منسوج.

2. مطالعه تأثیر هندسه دستگاه پرده (صاف و برعکس بودن پارچه‌های پرده و آستری کاملاً پلیسه‌دار و تمایز سه بعدی بین پارچه‌های پرده و آستری) روی جریان حرارتی.

که نتیجه این کار بررسی تأثیر هندسه پارچه (بافت باز) و ویژگی‌های مختلف فیزیکی روی جریان حرارتی بود.

3. تعیین تأثیر سیستم پرده و پنجره روی جریان حرارتی.

2- فرضیه‌ها

فرضیه‌های زیر در این تحقیق بررسی شدند:

1. تفاوت اساسی بین ده نمونه پارچه موجود از نظر مقادیر انتقال تا زمانی که با وضعیت صاف و یک لایه شده آزمایش می‌شود.

2. تفاوت اساسی بین مقادیر انتقال پارچه‌های هیدروفیلیک و مقادیر انتقال پارچه‌های هیدروفوبیک وجود خواهد داشت.

3. تفاوت اساسی بین مقادیر انتقال پارچه‌های رنگی روشن و پارچه‌های رنگی تاریک وجود خواهد داشت.

4. تفاوت اساسی بین مقادیر انتقال پارچه‌های دارای بافت باز و پارچه‌های دارای بافت متراکم وجود خواهد داشت.

5. تفاوت اساسی بین مقادیر انتقال پرده‌های آزمایش شده با رطوبت نسبی پایین و موارد آزمایش شده با رطوبت نسبی بالا وجود خواهد داشت.

6. تفاوت اساسی بین مقادیر انتقال چهار پارچه رنگی روشن موجود تا زمانی که با وضعیت لایه قرار داده شده با پارچه آستری آزمایش شود.

7. تفاوت اساسی بین مقادیر انتقال پرده‌ها موجود که سطوح متفاوتی از فشردگی پرده را نشان می‌دهد.

8. تفاوت اساس بین مقادیر انتقال پرده‌ها موجود که سطوح متفاوتی از فشردگی آستر را نشان می‌دهد.

9. تفاوت اساسی بین مقادیر انتقال پرده‌ها موجود که سطوح مختلفی از فاصله سه بعدی بین پارچه آستری و پارچه پرده را نشان می‌دهند.

3- پنداشت‌ها (گمان‌ها)

در انجام این تحقیق، گمان‌های زیر ایجاد شده‌اند:

1. پارچه‌های انتخاب شده برای مطالعه، نمایانگر حداکثر ویژگی‌های موجود در جذب رطوبت، رنگ و گشادی پارچه منسوج هستند.

2. تست پنجره، طرح پرده مصنوعی و دما و رطوبت‌های نسبی مورد استفاده برای تست،که نمادی از مواد دریافت شده در محل‌های مسکونی هستند.

3. تمام تکنیک‌های مورد استفاده معتبر و قابل تولید مجدد هستند.

4ـ محدودیت‌ها

محدودیت‌های زیر برای این مطالعه بکار می‌روند:

1. پارچه‌های منتخب برای مطالعه فقط 100 درصد محتوای یک بافت مجزا را نشان می‌دهند. از هیچ بافت یک دستی استفاده نمی‌شود.

2. مدل‌های پرده فقط در دو سطح رطوبت نسبی داخلی، یک سطح دمای داخلی و یک متغیر دمای بیرونی ـ داخلی ارزیابی می‌شوند.

3. اشکال سه بعدی برای فاصله بین سه سطح پارچه‌های آستری و پرده و فقط یک سطح بین آستری و شیشه پنجره محدود می‌شوند.

4. فقط دو سطح از فشردگی پرده در برگرفته می‌شوند و فقط دو سطح از فشردگی آستر با هر سطح از فشردگی پرده ارزیابی می‌شوند.

5. فقط یک نوع از پارچه آستری به شکل لایه دوگانه مطالعه شد.

6. در زمان آزمایش پرده‌ها کاملاً به پنجره در قسمت بالا، پایین و دو طرف درزبندی می‌شوند. یافته‌های این مطالعه مستقیماً برای سیستم‌های پنجره ـ پرده قابل کاربرد نیستند که با یک درزبند پرده به دیوار محکم ساخته نشده‌اند.

7. فقط دو تکرار از هر آزمایش وجود داشت.

5- تعاریف

به منظور به دست آوردن اندازه‌های شمارشی هر متغیر مستقل، از چندین تعریف متفاوت در این تحقیق از کلی و معمولی مورد استفاده قرار می گیرند . این اصطلاحات خاص عبارتند از: هیدروفیلیسیتی، رنگ، گشادی پارچه، وزن پارچه، ضخامت پارچه، رطوبت نسبی، شرایط جوی استاندارد، اتاق دارای شرایط آزمایشگاهی، نشت گرمایی، انتقال گرمایی و فشردگی.

ماهیت هیدروفیلیک یا هیدروفوبیک یک بافت معمولاً به ظرفیت بافت برای جذب آب اشاره می‌کند. برای این مطالعه، هیدروفیلیسیتی تعریف مشابهی مثل بدست آوردن رطوبت دارد که توسط ASTM اینگونه تعریف می‌شود: «مقدار آب داخل یک پارچه که تحت شرایط مشخص تعیین شده و به عنوان درصدی از کل نمونه بدون آب بیان می‌شود.»

رنگ به روشنی یا تیرگی اشاره می‌کند که به وسیله میانگین برداشت از مقدار L در تفاوت‌سنج رنگ‌ها نترلب (مدل 2D25D) مشخص شده که یک برداشت L از 100 کاملاً سفید و یک برداشت L از صفر کاملاً سیاه می‌باشد.

بازی (گشادی) پارچه معمولاً قضاوتی ذهنی است که به قابلیت پارچه مربوط می‌شود که اجازه دهد روشنی از میان سوراخ پارچه یا نفوذپذیری هوا عبور کند. با این وجود، در محتوای این تحقیق، گشادی (بازی) پارچه تعریف مشابهی مثل نفوذپذیری هوا دارد که توسط ASTM اینگونه تعریف می‌شود: نسبت جریان هوا از میان یک پارچه تحت یک فشار متغیر بین دو سطح پارچه.

وزن پارچه جرم در هر واحد سطح است که اینگونه نوشته می‌شود:

ضخامت پارچه فاصله بین سطوح پایینی و بالایی پارچه که تحت فشار خاصی اندازه‌گیری می‌شود.

رطوبت نسبی نسبت فشار واقعی بخار آب موجود به ماکزیمم فشار ممکن (توازن اشباع) بخار آب در فضا در دمای مشابه که با درصد بیان می‌شود.

شرایط جوی استاندارد که از رطوبت نسبی 2%±65 و دمای °F2±70 (°C1±21) تشکیل می‌شود.

اتاق دارای شرایط آزمایشگاهی اتاقی است که تجهیز می‌شود تا شرایط جوی استاندارد را با تحمل استاندارد حفظ کند.

انتقال گرمایی اندازه‌گیری مستقیم جریان گرمایی از یک پارچه است که اینگونه نوشته می‌شود: Btx/hr/ft2/°F. انتقال گرمایی اغلب به «مقدار x» اشاره می‌شود.

نشت گرمایی یک پارچه اندازه مقاومت آن به جریان گرمایی است که به عنوان مقدار R بیان می‌شود. مقدار R عکس مقدار x است.

فشردگی عرض پارچه مورد استفاده می‌باشد تا عرض پنجره را پر کند که به عنوان درصد بیان می‌شود.برای 100% فشردگی دو برابر عرض پارچه مورد نیاز برای پر کردن فاصله‌ای می‌باشد که توسط پرده بسته پوشیده می‌شود در حالی که 50% فشردگی یک و نیم برابر عرض پارچه مورد نیاز برای پر کردن فاصله‌ای می‌باشد که توسط پرده بسته پوشیده می‌شود. در فشردگی صفر درصد، عرض پارچه‌ای که پنجره را می‌پوشاند، برابر عرض پنجره می‌باشد بنابراین پارچه صاف است.


بررسی ساختمان شیمیایی سلولز

الیاف سلولز از مهمترین الیاف مورد استفاده در صنعت نساجی می باشند که همگی از گیاهان بدست می آیند الیاف سلولز طبیعی را می توان به گروههای زیر تقسیم بندی نمود
دسته بندی نساجی
فرمت فایل doc
حجم فایل 2851 کیلو بایت
تعداد صفحات فایل 180
بررسی ساختمان شیمیایی سلولز

فروشنده فایل

کد کاربری 8044

1-1- مقدمه

الیاف سلولز از مهمترین الیاف مورد استفاده در صنعت نساجی می باشند که همگی از گیاهان بدست می آیند. الیاف سلولز طبیعی را می توان به گروههای زیر تقسیم بندی نمود.

الف) الیاف دانه ای: این الیاف از تخم یا دانه گیاه به دست می آیند مانند الیاف پنبه

ب) الیاف ساقه ای: این الیاف از ساقه گیاه به دست می آیند مانند الیاف کنف، کتان و چتایی.

ج) الیاف برگی: الیافی که از برگ گیاه به دست می آیند مانند الیاف سیسال و مانیلا

د) الیاف میوه ای: الیافی که از میوه گیاه به دست می آیند مانند الیاف نارگیل

الیاف پنبه:

پنبه لیفی طبیعی از نوع سلولزی، دانه ای، تک سلولی و کوتاه می باشد. دانسیته آن 52/1 است که از اینرو جزء الیاف سنگین به شمار می آید الیاف پنبه طولی ما بین
56- 10 میلیمتر و قطری در حدود 22- 11 میکرومتر دارد و رنگ آن سفید تا
قهوه ای مایل به زرد متغییر است. نمای طولی میکروسکوپی آن به صورت لوله ای تابیده و پیچ خورده است و نمای عرضی آن لوبیایی شکل می باشد. [20]

2-1- ساختمان شیمیایی سلولز

با تجزیه و تحلیل نتایج آزمایشات مختلف و شناسائی عناصر سازنده سلولز می توان آن را در دسته کربوهیدراتها قرار داد.

هیدرولیز با اسید سولفوریک 72 درصد منجر به تولید 7/90 درصد گلوکز می گردد. اگر محصول حاصل از هیدرولیز را به کمک الکل اتیلیک و اسید کلریدریک به عنوان کاتالیزور، متانولیزه نمائیم محصول حاصل 5/80% از مشتقات متیل گلوکز خواهد بود. محصول بدست آمده را با واکنش مکرر و استفاده از کاتالیزورهای دیگر می توان تا 5/95 درصد افزایش داد. نتیجه حاصل 5/95 درصد را می توان دلیل محکمی دانست که سلولز پلیمری است که از واحد های سازنده گلوکز تشکیل شده است. [16]

3-1- گلوکز

گلوکز یا پنتاهیدرواکسیدآلدئید مونوساکاریدی است که ملکول آن دارای 6 اتم کربن می باشد.

شکل 1-1- ساختمان خطی ملکولی گلوکز یا پنتاهیدراکسید آلدئید

گلوکز به دلیل دارا بودن چهار اتم کربن نا متقارن (کربن 2 و 3 و 4 و 5) در زنجیر ملکولی دارای 16 ایزومر می باشد که از این 16 ایزومر، 8 ایزومر تصویر آیینه ای 8 ایزومر دیگرند.

چون ایزومرها تصویر آیینه ای دارند ترتیب قرار گیری گروههای هیدروکسیل هیدروژن سمت چپ و راست ملکول گلوکز باعث تقسیم بندی ایزومرها به راست گرد (D) و چپ گرد (L) می شود که گلوکز سازنده سلولز از نوع راست گرد (D) می باشد. [2]

همانگونه که در شکل 1-1 نشان داده شده است پنتاهیدراکسید آلدئید دارای گروه آلدئیدی در کربن شماره 1 می باشد ولیکن کلیه آزمایشات مشخص کننده آلائیدها بر روی گلوکز به جواب منفی می انجامد که دلیل آن را می توان به واکنش گروه آلدئیدی کربن 1 با گروه هیدروکسیل 5 و تبدیل مولکول از حالت خطی به حالت حلقوی پایدار نسبت داد. [2]

شکل 2-1- تبدیل فرم خطی گلوکز به فرم حلقوی

فرم حلقوی D گلوکز حالت فضایی کشیده شده ای دارد و اتم کربن شماره 1 حلقه غیر متقارن می باشد و در نتیجه گروه های هیدروژن هیدروکسیل متصل به آن
می تواند دو حالت فضایی و را اختیار کند.

- D گلوکز مونومر سازندة نشاسته می باشد ولی - D گلوکز واحد سازنده سلولز است. این دو ایزومر از نظر خصوصیات فیزیکی و شیمیایی با یکدیگر اختلاف زیادی دارند.

4-1- پلیمریزاسیون - D گلوکز

- D گلوکز با دارا بودن پنج گروه هیدروکسیل سازندة زنجیره پلیمری سلولز است. در صورت اتصال دو ملکول - D گلوکز به یکدیگر هر ملکول، یک هیدروکسیل از دست می دهد و بین آنها پیوندی اتری برقرار می شود و یک ملکول آب آزاد
می شود.

با انجام آزمایشات مختلف مشخص گردیده که در زنجیره پلیمری سلولز پیوندی ملکولی - D گلوکز از طریق کربن شماره 1 و 4می باشد و در این صورت هر ملکول، دو گروه هیدروکسیل از دست می دهد و سه هیدروکسیل دیگر برایش باقی می ماند. پیوند حاصله را که پیوندی اتری می باشد پیوند 1 و 4 - گلوکز گلوکزیدیک می نامند.

شکل 3-1- پلیمریزاسیون گلوکز و ایجاد پیوند 1 و4 - گلوکزیدیک

همانطور که در شکل 3-1 نشان داده شده است مونومرهای - D گلوکز متصل شده در زنجیر سلولز نسبت به یکدیگر وضعیت ترانس دارند، یعنی در زاویه ْ 180 نسبت به یکدیگر قرار گرفته اند. به همین دلیل گروه CH­2OH یک در میان بالا و پایین قرار می گیرد، از این جهت کوچکترین واحد تکرار شونده در سلولز را سلوبیوز می دانند. [2]

شکل 4-1- عوامل جانبی زنجیر سلولز

همانطور که در شکل 4-1 مشخص شده است، انتهای زنجیر سلولز ملکول گلوکز شماره n قرار گرفته است، این ملکول از طریق اتم شماره 4 به اتم کربن شماره 1 ملکول گلوکز قبلی (1- n) از زنجیر سلولز متصل گردیده است.

این انتها را، سمت قابل احیاء زنجیر سلولز می نامند چون ملکول گلوکز شماره n در اثر اکسیداسیون تجزیه و به ملکول کوچکتر تبدیل می شود. ملکول گلوکز (1-n) نیز دارای همین خصوصیت است و قابل تجزیه می باشد و از این سمت خطر تجزیه کامل زنجیر سلولز وجود دارد.

بر عکس مولکول گلوکز شماره 1 از طریق کربن شماره 1 به زنجیر متصل است و قادر به واکنش نمی باشد همینطور مولکول گلوکز شماره2 تا شمارة n توسط کربن شماره 1 متصل هستند و از این سمت خطر تجزیه کامل زنجیر سلولز وجود ندارد، به همین دلیل این سمت را، سمت غیر احیائی زنجیر می دانند. [4 و 2]

گروه های جانبی سلولز گروه های هیدروکسیل می باشند. یکی از عوامل هیدروکسیل نوع اول و دوتای دیگر نوع دوم هستند. کربن شمارة 6 دارای نوع اول و کربن 2 و 3 دارای عامل الکلی نوع دوم هستند. [4]

عامل الکلی نوع اول فعالیت و واکنش پذیری بیشتری نسبت به عامل الکلی نوع دوم دارد.

5-1- پیوندهای بین زنجیرهای سلولز

پیوندهای موجود در بین زنجیرهای سلولز طبیعی پیوندهای هیدروژنی می باشد که بین عاملهای هیدروکسیل یک زنجیر با زنجیر دیگر ایجاد می شود. همچنین احتمال وجود پیوندهای واندروالس نیز در بین زنجیرهای سلولز داده شده است. [4 و 2]

به غیر از این پیوندها می توان توسط مواد شیمیایی پیوندهای دیگری را جهت تغییر خصوصیات سلولزی یا الیاف سلولزی ایجاد کرد. این پیوندهای ایجاد شده از نوع کوالانسی و بسیار محکم می باشد و خصوصیات الیاف سلولزی یا سلولز را بطور دائم تغییر می دهند.

پیوند دادن بین زنجیرها را با ترکیبات زیر می توان انجام داد. [20 و 2 و 1]

الف) پیوند دادن بوسیله فرم آلدئید

2Cell-OH + CH2O " Cell-O-CH2-O-Cell

ب) پیوند دادن بوسیله دی متیلول اوره

0

0

2Cell-OH+HOCH2NHCNHCH2OH"Cell-O-CH2HNCNHCH2-O-Cell

ج) پیوند گوگردی:

این پیوند در اثر یکسری واکنشهای پیچیده و در طی چند مرحله روی سلولز انجام
می شود.

2Cell-SH " Cell-S-S-Cell

6-1- تخریب کننده های سلولز

سلولز با دارا بودن ساختمان شیمیایی که در صفحات قبل در مورد آن بحث شد در مقابل بسیاری از ترکیبات شیمیایی و عوامل فیزیکی قابلیت تخریب و تجزیه دارد. بعضی از این عوامل تخریب کننده عبارتند از:

1-6-1- تخریب با اسیدها

تخریب سلولز در محلول های اسیدی بستگی به PH عملیات و حرارت و زمان دارد. علت تخریب شکسته شدن پیوندهای 1 و4 - گلوکوزیدیک است که با کاهش درجه پلیمریزاسیون (DP) و افزایش سیالیت محلول همراه است. محصول حاصل از عمل تخریب سلولز با اسید را هیدروسلولز می نامند. [4 و 2]

2-6-1- تخریب با مواد اکسید کننده

مواد اکسید کننده بر روی سلولز اثر کرده و اکسی سلولز را بوجود می آورند. با در نظر گرفتن زنجیر پلیمری سلولز که از واحد های - D گلوکز تشکیل یافته و هر واحد گلوکز دارای سه گروه عامل هیدروکسیل که یکی از آن نوع اول و دوتای آن از نوع دوم هستند و با در نظر گرفتن اینکه عوامل هیدروکسیل بسیار واکنش پذیر و قابل اکسید شدن هستند انتظار می رود عوامل الکلی نوع اول به آلائید و سپس به اسید و الکلهای نوع دوم به کتون تبدیل شوند. همچنین احتمال واکنش از سمت احیائی زنجیر و تولید اسید گلوکونیک نیز می باشد. [20 و 2 و 4]

3-6-1- تخریب با قلیا

بر خلاف اینکه سلولز در محلولهای رقیق اسیدی تجزیه می شود در محلولهای قایائی رقیق پایدار است. محلولهای غلیظ و داغ قلیا باعث تجزیه سلولز می شود. تجزیه از سمت احیائی زنجیر آغاز می شود و با تبدیل واحدهای گلوکز به فرکتوز و سپس به اسید ایزوساکارنیک به پیش می رود. [2]

4-6-1- تخریب با آنزیم

آنزیم ها از نظر شیمیائی پروتئین می باشند و به منظور تسریع در انجام عملیات بیولوژیکی استفاده می شوند. آنزیم ها انواع مختلفی دارند که هر یک توانائی شکستن نوعی پیوند را دارد. آنزیمی که سلولز را مورد تخریب قرار می دهد سلولاز نام دارد و با کاهش درجه پلیمرازسیون سلولز از طریق شکستن پیوند 1 ، 4 - گلوکزیدیک باعث تجزیه سلولاز به اولی گومر، مونومر و حتی آب و دی اکسید کربن می گردد. آنزیم های سلولاز بر مشتقات سلولز و سلولزی که پیوند بین زنجیری داده شده، بی اثر می باشد. [20 و 2]

5-6-1- تخریب بوسیله نور خورشید

به دلیل وجود اشعه ماوراء بنفش در نور خورشید و طول موج های کوتاهتر از نور موئی که دارای انرژی زیادی هستند، سلولز تجزیه و تخریب می گردد.

6-6-1- تخریب بوسیله حرارت

حرارت نیز اگر از مقدار معینی تجاوز کند باعث اکسیداسیون سلولز می گردد.

7-1- پنبه

اگر چه الیاف ساقه ای در نوع خود دارای ارزشی در صنعت نساجی است. ولی اهمیت آنها هرگز به پنبه نمی رسد. از خصوصیات مهم این الیاف، استحکام زیاد در پارچه، داشتن قدرت وقابلیت انعطاف در مقابل هر گونه عملیات ریسندگی و بافندگی و تمایل به جذب رنگهای متفاوت است. همین خصوصیات باعث شده است که با وجود افزایش الیاف مصنوعی، پنبه اهمیت خودش را حفظ کند و مقدار محصول و مصرف آن همواره افزایش یابد. [4]

8-1- خصوصات گیاهی

پنبه گیاهی است علفی که ارتفاع آن به 6/0 تا 2 سانتی متر می رسد. برگهایش دارای بریدگی است و گلهای سفید، زرد و یا صورتی دارد میوه پنبه کپسولی است به اندازه یک گرد و به نام غوزه پنبه (batt) که تخمها که در واقع همان تخم پنبه
(Seed Cotton) هستند درون آن قرار دارند. الیاف پنبه به صورت توده ای متراکم در سطح تخمکها رشد می کنند. گلهایی که در روی گیاه می رویند، معمولاً هر کدام بیش از 15 تخمک دارند که درون غوزه گیاه قرار دارند. غوزه پس از رشد کامل گیاه باز می شود و تخمکها و الیاف در داخل غوزه به صورت توده کرکدار در معرض هوا قرار می گیرند. هر یک از تخمکهای گیاه در حدود 20000 تا رلیف در سطح خود دارد و بنابراین هر یک از غوزه ها تقریباً حاوی 300000 تا رلیف هستند. وقتی که غوزه گیاه باز می شود رطوبت داخل الیاف تبخیر می شود و الیاف حالت استوانه بودن خود را از دست می دهد و این عمل باعث می شود که دیوارهای سلولی آن جمع شوند و حالت فرو ریختگی بیابند. در چنین حالتی، تار پنبه یک پیچش مختصر، یا نیم تاب به خود می گیرد که آن را اصطلاحاً پیچیدگی (Convolution) می نامند. [4]

9-1- اثر شرایط محیط در رشد پنبه

خصوصیات الیاف پنبه نظیر قطر آن به نوع پنبه بستگی دارد؛ ولی باید در نظر داشت که سایر شرایط از قبیل مناسب بودن زمین و همچنین شرایط جوی نظیر رطوبت زیاد و نور و آفتاب نیز در مرغوبیت آن اثر می گذارد. در یک گیاه معمولی رشد الیاف در داخل غوزه مدت یک ماه و نیم طول می کشد. ولی همه آنها در یک موقع به رشد کامل خود نمی رسند، و ممکن است بین 8 تا 9 هفته طول بکشد. از زمانی که گیاه دارای گل می شود تا زمانی که آخرین غوزه ها شروع به باز شدن می کنند. ممکن است در حدود چهار ماه طول بکشد. به هر طریقی که رشد پنبه در داخل غوزه انجام گیرد. مقداری از الیاف رشد کامل نمی کنند و مقدار الیاف رشد نکرده به به الیاف رشد کرده در داخل غوزه نشان دهنده کیفیت و بازدهی رشد نکرده به الیاف رشد کرده در داخل غوزه نشان دهنده کیفیت و بازدهی محصول است. در الیاف معمولی ممکن است در حدود یک چهارم الیاف رشد نکرده وجود داشته باشد و گاهی اوقات الیاف رشد کرده در داخل غوزه ممکن است به نود درصد برسد. [4]

10-1- ایجاد نپ (nep)

الیاف رشد نکرده ممکن است به طرق مختلفی ایجاد مشکلات کند که اهم آن بدین قرار است:

1- معمولاً بعد از خاتمه عملیات رنگرزی، الیاف رشد نکرده نسبت به الیاف رشد کرده کم رنگتر هستند و این در اثر ضخیم نبودن دیواره ها و یا عدم تکامل ساختمان لیف (پنبه نارس) است.

2- مقاومت این گونه الیاف فوق العاده کمتر از الیاف رشد کرده است و به سهولت پاره می شوند.

3- برای عملیات ریسندگی قابل استفاده نیستند و به عنوان ضایعات، دور ریخته
می شوند.

4- دارای قابلیت انعطاف هستند و به سهولت به دور الیاف دیگر می پیچند و ایجاد نپ می کنند. اگر چنین الیافی در پارچه رنگ شده وجود داشته باشند، به علت کمرنگ بودن آن، کالای رنگ شده یکنواخت به نظر نمی آید. [4]

11-1- ساختمان لیف پنبه

مولکولهای سلولز پنبه که تحت عملیات مکانیکی و شیمیایی قبلی قرار نگرفته باشد از پلیمرهای خطی که حاوی حداقل 5000 واحد انیدروگلوکز Anhydroglucose (وزن مولکول حداقل 800000) می باشند تشکیل می گردد. معمولاً در حالت جامد بشکل صفحات مسطح می باشند و در حضور آب این صفحات بطور منظم بهم چسبیده می باشند، ولی در بعضی مواقع بعضی از آنها از این حالت مسطح (form Flat) تبعیت نمی کنند و خمشهای مولکولی (Chain folding) در بعضی از الیاف سلولزی مشاهده می گردد. مولکولهای سلولز پنبه در حالت کاملاً گسترده و بموازات محور فیبریلها قرار دارند.

مطالعات بوسیله جذب نور ماوراء قرمز (Infra red) نشان می دهد که اغلب گروههای هیدروکسیل با یکدیگر پیوند هیدروژنی بر قرار می سازند ولی بطور دقیق چگونگی حالت تشکیل این پیوندهای هیدروژنی هنوز معلوم نشده است. شکل 5-1 امکان تشکیل دو نوع پیوند هیدروژنی بین مولکولی منظم را نشان می دهد.

شکل (5-1) دو نمای متفاوت از پیوندهای هیدروژنی بین مولکولی

در هر دو حالت فوق صفحات مسطح وقتی می توانند تشکیل گردند که بین گروههای هیدروکسیل و اتمهای اکسیژن در زنجیرهای مجاور پیوند هیدروژنی بیشتری برقرار گردد. پیوند بین صفحات مولکولها احتمالاً بوسیله نیروهای واندروالس حاصل
می شود.

شکل 6-1 نشان می دهد که چگونه سطوح آبدوست (Hydrophilic) واحدهای انیدروگلولز (Anhydroglucose) به نقاط استوانی (Equaterial) خود محدود شده است و سطوح مسطح بالا و پایین خاصیت غیر آبدوستی Hydrophobic دارند.

شکل (6-1) یک واحد سلوبیوز موقعیت اتمهای حلقوی را در دو سطح موازی با گروه های آبدوست و سطوح غیرآبدوست جانبی‌یا‌استوانه ای قرار دارند نشان می دهد.

اخیراً با روش سانترفیوژ تعداد 10000 واحد گلوکز که وزن مولکولی 1580000 را نشان می دهد برای سلولز پنبه ارائه شده است.

باید اضافه کرد که از پیوند مولکولهای الفا – دی – گلوکز(glucosed - ) زنجیر خطی مستقیم که قابلیت تشکیل لیف سلولزی را داشته باشند بدست نمی آید بلکه مواد سلولزی دیگری مانند نشاسته حاصل می شود. شکل 7-1 شمای یک لیف پنبه را نشان می دهد.

شکل(7-1) شمای ساختمان لیف پنبه قبل از اولین خشک شدن لیف

دیوار اولیه (Primaey Well) از پوسته ای بضخامت 1/0 با فیبریلهای متقاطع و تحت زاویه خطی نسبت به محور لیف تشکیل شده است. موقعیکه لیف متورم
می گردد توده سلولز یعنی دیواره ثانوی، که شامل S3, S2, S­1 می باشد و فیبرهای آنها زاویه 25- 20 درجه نسبت به محور لیف قرار دارند، به دیواره اولیه و مغز لیف، لومن (Lumen) فشار وارد می سازند.

دیواره ثانویه از لایه های متعددی تشکیل شده است S3, S2, S­1 ... S این لایه ها را می توان با روشهای تورمی از یکدیگر جدا کرد. دیواره ثانویه متراکمتر از دیواره اولیه بوده و دسته های فیبریلهای آن در طول لیف، جهت آرایش، زاویه فیبریلهای خود را نسبت به محور لیف عوض می کنند و این تغییر جهت در آن محل موجب تاب دار شدن (Convolutions) لیف پنبه می گردد. و تعداد این تابهای طبیعی لیف و آرایش فیبریلی آن بطور کلی بستگی به نوع لیف پنبه و قابلیت تطویل آن دارد.

ضخامت فیبریلهای موجود در سلولز در حدود nm 20 می باشد. و بعضی از این فیبریلها خودشان نیز به فیبریلهای نازکتر و بضخامت nm 5 تقسیم می شوند و از تجمع این فیبریلها یک دسته فیبریل بضخامت nm 200 حاصل می شود که می توان آنها را بوسیله میکروسکوپ نوری مشاهده کرد. این تجمع با نیروی خیلی ضعیفی بهم متصل شده اند که به راحتی از هم گسسته می گردند.

بوسیله مطالعه با اشعه ایکس معلوم شده است که 60/ 58 درصد از گروههای هیدروکسیل پنبه دارای پیوندهای هیدروژنی منظم (ordered) و 40% بقیه غیر منظم (disordered) می باشند. شکل 8-1 نمای مناطق بلوری و بی شکل در لیف پنبه را نشان می دهد [7].

شکل (8-1) نمایش دیاگرامی مناطق بلوری و بی شکل

12-1- شکل سطح مقطع و شکل طولی لیف پنبه

شکل 9-1 سطح مقطع تصویر طولی لیف پنبه را در زیر میکروسکوپ نوری نشان
می دهد.

بطوریکه ملاحظه می شود مقطع تصویر طولی لیف تابهای آن (Convolution) مشاهده می شوند و سطح مقطع لیف حالت لوبیائی شکل دارد و مغز لیف یا لومن (Lumen) بصورت خط دیده می شود.

طول متوسط الیاف طبیعی پنبه حدود 14- 36 میلیمتر و قطر آن 15- 20 میکرون
می باشد مقاومت لیف حدود 3 – 6 گرم بر دنیر و تطویل آن تا حد پارگی
5- 7 درصد است.

شکل (9-1) تصویر مقطع عرضی و طولی الیاف پنبه

پنبه در شرایط استاندارد (22 درجه سانتیگراد و 76 درصد رطوبت نسبی) مقدار
8 درصد رطوبت بخود جذب می کند. [7]

13-1- مشخصات قسمتهای مختلف ساختمان تار پنبه ( مقطع عرضی )

1 -13-1- لایه (Cuticle)

این لایه خارجی ترین قشر لیف پنبه است سلولهای این قسمت به یکدیگر بسیار نزدیک هستند و به مقدار زیادی از اثرات زیان بخش عوامل خارجی و نفوذ آب به داخل لیف جلوگیری می کنند. یکی دیگر از خواص مهم این لایه ، جلوگیری از عمل اکسیداسیون در مجاورت اکسیژن هوا و اشعه ماوراء بنفش موجود در تابش شدید آفتاب است .ساختمان این لایه به درستی معلوم نیست ، اما تا آنجا که تحقیق شده است مواد شمعی (Wax) و پکتین در آن وجود دارد این واکس درواقع مخلوطی از چند واکس و چربی و انواع رزینهاست . اگرچه لایة کوتیکل در حین رشد لیف تشکیل می شود و لایه اولیه لیف رامانند قالبی در بر میگیرد ولی جزئی از آن به شمار نمی رود در حین مراحل رشد طولی لیف ، این لایه مانند قشری از چربی به نظر
می رسد و هنگامی که لایه دوم شروع به رشدو تشکیل شدن می کند، این قشر سخت می شود و حالت لعاب پیدا میکند. [4]

2-13-1- لایه اولیه (Primary wall)

در اولین مراحل رشد لایه لیف پنبه ، لایه اولیه شامل هسته و پروتوپلاسم است و این دو ماده هستند که اجزای اساسی و شالوده زندگی هر سلول زنده ای را تشکیل
می دهند اگر لایه اولیه راتقریباً «تماماً» از سلولز تشکیل شده است در یک حلال سلولز (هیدروکسید کوپرآمونیوم)‌ حل کنیم، فقط لایة کوتیکل باقی می ماند ضخامت لایه اولیه فقط 1/0 تا 2/0 میکرون است ، درحالی که ضخامت متوسط لیف در حدود 20 میکرون است مواد سلولزی که در این لایه است از اولین مراحل رشد لیف تشکیل
می شوند و مطالعات میکروسکوپی در مراحل مختلف رشد لیف نشان می دهد که این لایه حاوی لیفچه هایی است که در سطح خارجی لایة موازی با محور لیف ودر قسمتهای داخلی ، در جهت عرضی با محور لیف قرار گرفته اند. در فاصله این دو ناحیه فیبریلهای میانی ، تقریباً با زاویه 70 درجه نسبت به محور لیف قرار گرفته اند بدیهی است اگر این تمایل درجهت چپ باشد پیچش لیف در جهت چپ( s) است و اگر در جهت راست باشد شکل (Z) خواهد داشت.

این نحوه قرار گرفتن لیفچه ها سبب می شود که قدرت لیف در جهت طولی کمتر از جهت عرضی باشد و به همین دلیل است که قدرت و استحکام زیاد لیف در جهت پیرامون آن از تورم بعدی لیف به مقدار قابل توجهی می کاهد و قدرت لیف در جهت طولی ممکن است در اثر الیاف نارس باشد که استحکام کشش آنها کمتر از الیاف رسیده است . اگرچه لایه اولیه را کلاَ سلولز تشکیل می دهد ولی ناخالصیهای این لایه مواد پکتین و چربیها هستند. [4]

3-13-1- لایه دوم (Secondary wall)

این لایه که تقریباً‌90% وزن کل لیف را تشکیل میدهد در مرحله دوم رشد لیف به وجود می آید این دیواره از رسوب طبقات متوالی لایه های سلولز در داخل لیف تشکیل می شود بدون اینکه قطر لیف افزایش یابد. اگر در این مرحله از رشد مقطع عرضی، لیف را بررسی کنیم متوجه حلقه های مزبور که نمایشگر رشد روزانه و تکامل این لایه است می شویم مرحله تشکیل ابعاد و شکل حلقه ها بستگی زیادی به درجه حرارت و نور در مراحل رشد دارد .

چنانچه گیاه در شرایط ثابت قرارا گیرد یا اینکه یکی از عوامل موثر وجود نداشته باشد امکان دارد که این لایه در لیف تشکیل نشود یا حداقل ناقص باشد وجود این لایه در استحکام کشش لیف اهمیت زیادی دارد .

مطالعاتی که درمورد لایة‌دوم انجام گرفته است نشان می دهد که شبکه فیبریلها از لیفچه های بلند وبسیار نازک تشکیل شده است که احتمالاً در یک لیف متورم و یا خرد شده دیده می شود اما ابعاد این لیفچه ها بر حسب نوع نمونه لیف بسیار متغیر است ولی معدل قطر آنها بین 4 . 1- 1 . 0 میکرون تغییر می کند .[4]

4-13-1- کانال لومن (Lumen)

کانال لومن لوله ای است که در داخل لیف و در سرتاسر طول آن ، از ریشه لیف تانوک آن ، ادامه دارد. قطر فضای لومن در طول لیف متغیر است هنگامی که لیف در حال رشد کردن است و هنوز غوزه پنبه باز نشده است سطح مقطع لومن تقریباً یک سوم سطح مقطع لیف را تشکیل می دهد هنگامی که غوزه می رسد و لیف خشک
می شود این قسمت به کمتر از پنج صدم می رسد و به شکل شکاف باریکی دیده
می شود هنگامی که لیف در حال رشد است فضای لومن حاوی پروتوپلاسم است که سبب ایجاد رشد ونمو سلولها ست ولی پس از خشک شدن لیف مقداری پروتوپلاسم خشک از لیف باقی می ماند در داخل لومن مقداری مواد پروتئین ، مواد معدنی و مقداری پکمنتهای رنگی وجود دارد که سبب رنگ کرم پنبه اهلی می شود. [4]

14-1-مواد تشکیل دهنده الیاف سلولزی ( پنبه )

صرفنظر از سلولز که تقریباً 94-88% از وزن الیاف پنبه را تشکیل می دهد مواد دیگری نظیر پکتین ، واکس ،پروتئین و مواد کانی در این لیف وجود دارد که در جدول زیر مقادیر تقریبی آنها را برای دو نمونه پنبه آورده شده است :

جدول 1-1 مواد شیمیایی تشکیل دهنده پنبه

مواد تشکیل دهنده

(‌درصد وزن خشک) در یک نمونه پنبه ناشناخته

(درصد وزن خشک )‌در یک نمونه پنبه امپایر

سلولز

93/94

30/95

پروتئین

2/1

00/1

خاکستر

(16/1)67/0

(86/0)50/0

واکس

75/0

75/0

اسید پکتیک

78/0

99/0

اسید مالئیک

48/0

19/0

اسید سیتریک

06/0

04/0

سایر اسیدهای آلی

32/0

32/0

قندها

15/0

10/0

سایر مواد

83/0

81/0

جمع

00/100

00/100

در مورد ماده تشکیل دهنده سلولز قبلاً مطالبی ذکر شده است اینک سایر مواد را مورد بحث قرار می دهیم .

1-14-1- واکس

واکس یا موم موادی است که به وسیله تقطیر سلولز با حلالهای آلی نظیر تتراکلرور کربن و یا بنزن به دست می آید وبعد از سلولز مهمترین ماده ای است که در لیف سلولزی موجود است مقدار واکس در انواع مختلف پنبه متفاوت و حدود 4/0 تا 8/0 درصد است .

تصور می شود که قسمت اعظم واکس در لایه اولیه لیف نهفته است .

واکس صرفنظر از نرمشی که به سطح لیف می دهد و سبب تسهیل عملیات ریسندگی می شود از اصطکاک بین الیاف می کاهد و نتیجتاً از قدرت کشش بین الیاف نیز کاسته می شود. آزمایشاتی که در این مورد به عمل آمده است نشان می دهد قدرت نخی که از الیاف موم گرفته(‌به وسیله حلالهای آلی ) تهیه می شود حدود 5/2% بیشتر از نخ مشابهی است که از الیاف موم نگرفته تهیه شده است.

از دیگر خواص واکس جلوگیری از نفوذ آب به لیف است کما اینکه لیف پنبه خام مدت چند روز در سطح آب شناور می ماند ولی پنبه ای که در محلول رقیق سودکستیک جوشانیده شده یا سوکسله شده توسط حلالهای آلی پس از چند دقیقه خیس و غوطه ور می شود مطالعاتی که روی ترکیب شیمیایی واکس صورت گرفته است نشان می دهد که الکلها و اسیدهای بزرگ و ترکیبات آلی دیگری در واکس وجود دارند .

2-14-1- پکتین ومواد وابسته به آن

مقدار پکتین در پنبه رسیده متغیر و حدود 6/0 تا 0/1 درصد است و مقادیر آن بستگی به شرایط و نحوه استخراج دارد در یک آزمایش توسط اگزالات آمونیوم وپکتات کلسیم رسوبی برابر 7/0 درصد به دست آمده ودر آزمایشات با روشهای دیگری تا 2/1 درصد تعیین می شوند و بیشتر مقدار پکتین در لایه اولیه لیف قرار گرفته است با مطالعاتی که توسط میرومارک انجام شده است اسید پکتیک را پلیمر خطی یا ساختمان حلقه های پیرانوز که در ناحیه کربن شماره 4.1 به هم متصل هستند معرفی کرده اند.

حدس زده می شود که پکتین مانند ماده سیمانی زنجیرهای سلولز را به یکدیگر متصل می کند ولی هنوز دلیل قاطعی برای این فرضیه چه از طریق آزمایش و چه از نظر تئوری آورده نشده است.

تمام مقدار پکتین موجود در لیف با جوشانیدن لیف در محلول یک درصد سود به مدت یک ساعت خارج می کنند در صورتی که از طریق حلالیت در آب به خودی خود خارج می شود پکتین که بدین طریق از لیف خارج می شود در محیط اسیدی
ته نشین می شود و قهوه ای رنگ و موم و مواد پروتئینی همراه آن است باید گفت که با خارج کردن پکتین از لیف حلالیت لیف در محلول کوپرآمونیوم و قدرت کشش آن تغییر قابل ملاحظه‌ای نمی کند .[4]

3-14-1- خاکستر و مواد متشکله آن

در یک نمونه پنبه 2/1 درصد خاکستر وجود داشت که از آنالیز کردن آن مقادیر زیر برای محتویات آن نتیجه شده است :

5%

Sio2

34%

K2O

4%

So3

11%

CaO

5%

P2O5

6%

Mgo

4%

C1

7%

Na2O

20%

Co2

2%

Fe2O3

مقدار بسیار کم

Zn,B,Mn,Cu

2%

Al2O3

تغییرات زیادی در مقدار خاکستر و درصد مواد موجود در آن ، در نمونه های مختلف پنبه مشاهده می شود و دلیل آن نحوه کشت و برداشت پنبه و چگونگی آزمایش است.

خاکستر پنبه به شدت قلیایی است به طوری که یک گرم آن 13 تا 16 سانتیمتر مکعب اسید کلریدریک نرمال را خنثی می کند در اثر شستشوی الیاف حدود 85% خاکستر آن بخصوص نمکهای سدیم و پتاسیم آن جدا می شود ولی عناصری نظیر کلسیم، آهن و آلومینیوم باقی می ماند. باید گفت که شستشوی الیاف پنبه باعث جدا شدن مواد تشکیل دهنده خاکستر، بخصوص نمکهای سدیم و پتاسیم آن می شود و مقاومت الکتریکی پنبه را افزایش می دهد به طوری که می تواند برای عایق بندی سیمهای الکتریکی و کابلها به جای ابریشم به کار رود. [4]

4-14-1- اسیدهای آلی

خاصیت شدید قلیایی خاکستر پنبه، دلیل بر وجود نمکهای اسیدهای آلی در پنبه است. در پنبه حدود 8/0% اسیدهای آلی دیده می شود که به استثنای اسیدپکتیک باید اسیدمالئیک و اسیدسیتریک را نام برد و هر دوی این اسیدها به صورت کریستان، با رسوب از پنبه خام جدا می شوند. مقدار این اسیدها در اثر بارندگی، یا در اثر مجاورت لیف با هوا کاهش می یابد و علت آن را می توان در تجزیه این اسیدها در اثر رشد میکرو ارگانیسم (ذرات میکروسکوپی آلی) ها روی لیف پنبه دانست. [4]


بررسی اندازه گیری یون کروم (III) در پساب رنگی

روش­های سینتیکی اسپکترفوتومتری از جمله روش­های تجربه دستگاهی به منظور بررسی تغییرات میزان گونه­های موجود در نمونه می­باشند که ضمن دارا بودن صحت، دقت و سرعت عمل بالا دارای هزینه روش بسیار پایین است این خصوصیات کاربرد این تکنیک را در حد وسیعی برای بررسی رفتار ترکیبات رنگی و چگونگی تخریب وحذف آنها از پساب­های صنعتی میسر می­سازد نظر به اهمیت ایجاد آلو
دسته بندی نساجی
فرمت فایل doc
حجم فایل 1303 کیلو بایت
تعداد صفحات فایل 75
بررسی اندازه گیری یون کروم (III) در پساب رنگی

فروشنده فایل

کد کاربری 8044

چکیده :

روش­های سینتیکی- اسپکترفوتومتری از جمله روش­های تجربه دستگاهی به منظور بررسی تغییرات میزان گونه­های موجود در نمونه می­باشند که ضمن دارا بودن صحت، دقت و سرعت عمل بالا دارای هزینه روش بسیار پایین است. این خصوصیات کاربرد این تکنیک را در حد وسیعی برای بررسی رفتار ترکیبات رنگی و چگونگی تخریب وحذف آنها از پساب­های صنعتی میسر می­سازد. نظر به اهمیت ایجاد آلودگی توسط رنگ­های آلی در پساب­های صنعتی ارائه روش­های مناسب و جدید با حداقل هزینه و کارآیی بالا به منظور حذف این گونه ترکیبات مورد نظر پژوهشگران بوده و هست.

در این پروژه علاوه بر ارائه فاکتورهای مؤثر در تخریب رنگ متیلن­بلو می­توان به اندازه­گیری یون کروم که یک ماده سرطان­زاست، پرداخت. یک روش حساس و ساده برای تعیین مقادیر بسیار کم کروم به روش سینتیکی- اسپکتروفوتومتری براساس اثر بازدارندگی کروم در واکنش اکسیدشدن متیلن­بلو توسط پتاسیم نیترات در محیط اسیدی (H2SO4 4 مولار) معرفی شده است. این واکنش به روش اسپکتروفوتومتری و با اندازه­گیری کاهش جذب متیلن­بلو در طول موج 664 نانومتر به روش زمان ثابت استفاده شده است.

فهرست مطالب

عنوان صفحه

چکیده

فصل اول : اسپکتروفوتومتری

1-1- اساس اسپکتروفوتومتری جذبی................. 14

1-2- جذب تابش.................................. 15

1-3- تکنیک­ها و ابزار برای اندازه­گیری جذب تابش ماوراء بنفش و مرئی 15

1-4- جنبه­های کمی اندازه­گیریهای جذبی............ 16

1-5- قانون بیر- لامبرت (Beer - Lamberts Law)......... 17

1-6- اجزاء دستگاهها برای اندازه­گیری جذبی....... 21

فصل دوم : کاربرد روشهای سینتیکی در اندازه­گیری

2-1- مقدمه..................................... 23

2-2- طبقه­بندی روشهای سینتیکی................... 25

2-3- روشهای علمی مطالعه سینتیک واکنشهای شیمیایی 27

2-4- غلظت و سرعت واکنشهای شیمیایی ............. 28

2-5- تاثیر قدرت یونی........................... 28

2-6- تاثیر دما................................. 29

2-7- باز دارنده­ها.............................. 30

2-8- روشهای سینتیک............................. 30

2-8-1- روشهای دیفرانسیلی....................... 31

2-8-1-1- روش سرعت اولیه........................ 31

2-8-1-2- روش زمان ثابت ........................ 33

2-8-1-3- روش زمان متغیر........................ 34

2-8-2- روشهای انتگرالی......................... 35

2-8-2-1- روش تانژانت .......................... 36

2-8-2-2- روش زمان ثابت......................... 36

2-8-2-3- روش زمان متغیر........................ 37

2-9- صحت دقت و حساسیت روشهای سینتیکی........... 38

فصل سوم: کروم

مقدمه ......................................... 2

3-1- تعریف چرم................................. 4

3-2- لزوم پوست پیرایی ......................... 4

3-3- پوست پیرایی با نمک­های کروم (دباغی کرومی) . 5

3-4- تاریخچه پوست پیرایی با نمک­های کروم (III) .. 5

3-5- معادله واکنش با گاز گوگرد دی اکسید­........ 6

3-6- شیمی نمک­های کروم (III) .................... 6

3-7- شیمی پوست پیرایی با نمک­های کروم (III)...... 7

3-8- عامل های بازدارنده (کند کننده)............ 8

3-9- مفهوم قدرت بازی........................... 8

3-10- نقش عامل­های کندکننده در پوست پیرایی با نمک­های کروم (III) 9

3-11- عامل­های مؤثر بر پوست پیرایی کرومی........ 10

3-12- رنگ­آمیزی چرم­............................. 10

3-13- نظریه تثبیت رنگینه­ها..................... 11

3-14- صنعت چرم سازی و آلودگی محیط زیست......... 11

3-15- منبع­ها و منشأهای پساب کارخانه­های چرم سازی 12

فصل چهارم : بخش تجربی

4-1- مواد شیمیایی مورد استفاده................. 40

4-2- تهیه محلول­های مورد استفاده................ 40

4-3- دستگاه های مورد استفاده................... 41

4-4- طیف جذبی.................................. 42

4-5- نحوه انجام کار .......................... 43

4-6- بررسی پارامترها و بهینه کردن شرایط واکنش . 44

4-7- بررسی اثر غلظت سولفوریک اسید ............. 45

4-8- بررسی اثر غلظت متیلن بلو ................. 48

4-9- بررسی اثر غلظت آسکوربیک اسید ............. 51

4-10- شرایط بهینه ............................. 54

4-11- روش پیشنهادی برای اندازه گیری کروم ...... 54

فصل پنجم: بحث و نتیجه­گیری

5-1- مقدمه..................................... 55

5-2 – بهینه نمودن شرایط........................ 56

منابع ومآخذ.................................... 57


فهرست جداول

عنوان صفحه

جدول (3-1). طبقه بندی عمومی روشهای سینتیکی..... 26

جدول (4-1). مواد شیمیایی مورد استفاده.......... 40

جدول (4-2). تغییرات بر حسب غلظت های متفاوت H2SO4 46

جدول (4-3). تغییرات بر حسب غلظت های متفاوت MB 48

جدول (4-4). تغییرات برحسب غلظت های متفاوت AA 52

فهرست نمودارها

عنوان صفحه

نمودار (4-1) تشخیص طول­موج ماکسیمم رنگ متیلن­بلو. 42

نمودار (4-2) اثر تخریب رنگ متیلن بلو بدون حضور کروم (III) 44

نمودار (4-3). تغییرات بر حسب غلظت های متفاوت H2SO4 46

نمودار (4-4). تغییرات بر بر حسب غلظت های متفاوت MB 48

نمودار (4-5). تغییرات در برحسب غلظت های متفاوت AA 52

فهرست اشکال

عنوان صفحه

شکل (2-1) اجزاء دستگاه­ها برای اندازه­گیری جذب تابش 21

شکل (3-1) سرعت واکنش نسبت به زمان.............. 23

شکل (3-2) روش سرعت اولیه....................... 32

شکل (3-3) روش زمان ثابت........................ 34

شکل (3-4) روش زمان متغیر....................... 35

شکل (3-5) روش تانژانت.......................... 36

فصل اول

اسپکتروفوتومتری

1-1- اساس اسپکتروفوتومتری جذبی:

این روش بر اساس عبور پرتوی از اشعه الکترو مغناطیس از درون نمونه و سنجش میزان جذب آن قرار دارد. هنگامی که اشعه الکترو­مغناطیس از داخل یک محلول می­گذرد مقداری از آن بطور انتخابی جذب نمونه می­شود. به طوری که شدت نور خارج شده کمتر از شدت نوری است که به محلول تابیده شده است. این پدیده در مورد جذب تابش های مرئی به وضوح دیده می­شود.

مثلا اگر نوری سفید از میان محلول سولفات مس عبور داده شود، محلول آبی رنگ به نظر می­رسد زیرا یون­های مس محلول جزء قرمز پرتو تابیده شده را جذب کرده و مکمل آن که آبی است از خود عبور می­دهد.

اندازه­گیری جذب تابش­های مرئی – ماوراء بنفش راه مناسبی را برای تجزیه تعداد بیشماری از گونه­های آلی و معدنی فراهم می­آورد. تابش در این نواحی دارای انرژی کافی برای انتقالات الکترونی الکترونهای والانس است. اگر نمونه در حالت گازی از اتم ها و یا ملکول­های ساده تشکیل شده باشد، طیف جذبی آن معمولاً مرکب از یکسری خطوط تیز و کاملاً مشخص است که مربوط به تعداد محدود انتقالات الکترونیکی مجاز می­باشد.

طبیعت ناپیوسته فرآیند جذب، درجه بالایی از گزینش پذیری را به تجزیه­هایی می­دهد که بر پایه چنین اندازه­گیری­هایی قرار گرفته باشند، در مقابل، طیف­های جذبی یون­ها و ملکولها در محلول معمولاً شامل نوارهای پهن می­باشند که بخشی از آنها از همپوشانی انتقالات ارتعاشی و گاهی اوقات چرخشی بر روی انتقالات الکترونیکی ارتعاشی و گاهی اوقات چرخشی بر روی انتقالات الکترونیکی ناشی می­شود. در نتیجه هر جذب الکترونیکی را یکسری خطوط پهن نزدیک به هم که به نظر پیوسته می­رسند، همراهی می­کنند. بعلاوه پهن شدن خطوط در نتیجه نیروهای بین ملکولی رخ می­دهد. این نوع طیف­ها گزینش پذیری کمتری دارند.

1-2- جذب تابش:

وقتی که تابش از درون یک لایه شفاف جامد، مایع یا گاز عبور کند برخی از فرکانسها ممکن است توسط فرآیندی بنام جذب، بطور انتخابی حذف شوند. در اینجا انرژی بیشتر یا حالات تحریک شده ارتقاء می­یابند.

اتمها یا مولکولهای تحریک شده دارای عمر نسبتا کوتاهی می­باشند و تمایل دارند تا بعد از حدود 10 ثانیه به حالت­های عادی خود برگشت کنند. معمولا انرژی آزاد شده در این فرآیند در دستگاه بصورت گرما ظاهر می­شود. مع ذالک در بعضی موارد گونه­های تحرکی شده ممکن است یک تغییر شیمیایی را متحمل شوند که انرژی را جذب می­کند (یک واکنش فتوشیمیایی) و در موارد دیگر تابش در شکل فلوئورسانس یا فسفرسانس (معمولاً با طول موجهای بلند تر) دوباره نشر می­شوند.

اتمها مولکولها و یا یونها تعداد محدودی ترازهای انرژی کوانتیده گسسته دارند برای اینکه جذب تابش انجام گیرد انرژی فوتون تحریک کننده باید با تفاوت انرژی بین حالت عادی و یکی از حالتهای تحریک شده گونه جذب کننده یکی باشد.

از آنجایی که این تفاوت انرژی برای هر گونه منحصر به فرد است مطالعه فرکانسهای تابش جذب شده وسیله­ای را برای مشخص کردن مواد سازنده نمونه­ای از ماده فراهم می­آورد. برای این منظور یک منحنی از کاهش در توان نور تابنده (جذب) بصورت تابعی از طول موج یا فرکانس بطور تجربی ترسیم می­شود. منحنیهای نمونه­ای از این نوع، طیف­های جذبی نامیده می­شوند.

1-3- تکنیک­ها و ابزار برای اندازه­گیری جذب تابش ماوراء بنفش و مرئی:

اندازه­گیری جذب تابشهای ماوراء بنفش و مرئی راه مناسبی را برای تجزیه تعداد بیشماری از گونه­های آلی و معدنی فراهم می­آورد. تابش در این نواحی دارای انرژی کافی برای انتقال­های الکترونیکی الکترونهای والانس در لایه بیرونی است اگر نمونه در حالت گازی از اتمها و یا مولکولهای ساده تشکیل شده باشد طیف جذبی آن معمولاً مرکب از یک سری خطوط تیز و کاملاً مشخص است که مربوط به تعداد محدود انتقالات الکترونیکی مجاز می­باشد. طبیعت ناپیوسته فرآیند جذب، درجه بالایی از گزینش پذیری را به تجزیه­هایی می­دهد که بر پایه چنین اندازه­گیریهایی قرار گرفته باشند. در مقابل طیفهای یونها و مولکولها در محلول معمولاً حاوی نوارهای پهن می­باشند که بخشی از آنها از قرار گرفتن تغییرات انرژیهای ارتعاشی و گاهی چرخشی بر روی انتقالات الکترونی ناشی می­شود. در نتیجه هر جذب الکترونی را یک سری خطوط آنقدر بهم نزدیک که به نظر پیوسته می­رسند همراهی می­کند. بعلاوه، پهن شدن خطوط در نتیجه نیروهای بین مولکولی رخ می­دهد که این نیروها بین مولکولها یا یونهای بصورت نزدیک بسته­بندی شده در یک محیط مادی فشرده، عمل می­کنند. این نوع طیفها گزینش پذیری کمتری دارند. از طرف دیگر نوارهای پهن برای اندازه­گیری­های کمی دقیق، مناسب­ترند.

1-4- جنبه­های کمی اندازه­گیریهای جذبی:

جذب تابش الکترومغناطیسی توسط گونه M می­تواند به صورت یک فرایند برگشت ناپذیر دو مرحله­ای تلقی شود که اولین مرحله این فرآیند را می­توان بصورت زیر نمایش داد.

در اینجا M* نشان دهنده ذره اتمی یا مولکولی در حالت تحریک شده است که از جذب فوتون ناشی می­شود. طول عمر حالت تحریک شده کوتاه است (8-10 تا 9-10 ثانیه) و باوجود این حالت توسط یکی از چندین فرآیند آسایشی خاتمه داده می­شود. متداولترین نوع آسایش شامل تبدیل تحریک به گرماست؛ یعنی،

گرما

آسایش می­تواند از تجزیه M* جهت تشکیل گونه­های جدید نیز ناشی شود. چنین فرآیندی را واکنش فوتوشیمیایی می­نامند. ممکن است که آسایش منتج به نشر دوباره تابش بصورت فلوئورسانس یا فسفرسانس شود. مهم است به این نکته توجه شود که طول عمر M* بقدری کوتاه است که غلظت آن در هر لحظه تحت شرایط عادی، قابل صرفنظر کردن خواهد بود. بعلاوه، مقداری انرژی حرارتی تولید شده معمولاً قابل اندازه­گیری نیست. بنابراین، اندازه­گیریهای جذبی این حسن را دارند که حد اقل آشفتگی را در دستگاه تحت مطالعه ایجاد می­کنند.

1-5- قانون بیر- لامبرت (Beer - Lamberts Law):

به سادگی می­توان دریافت که میزان جذب نور توسط یک گونه جاذب بستگی به تعداد یونها و یا ملکولهای جسم جاذب در مسیر عبور نور دارد و در نتیجه با افزایش غلظت ذرات جاذب، شدت جذب نیز افزایش می­یابد. از طرفی هر چه قدر طول مسیر عبور نور از درون نمونه افزایش یابد، جذب نور با شدت بیشتری انجام خواهد گرفت. سومین عاملی که میزان جذب نور به آن بستگی دارد احتمال جذب فوتون توسط ذرات جاذب فوتون­هاست به طوری که اجسام مختلف احتمال­های متفاوتی برای جذب پرتوی فوتون­ها از خود نشان می­دهند.

حقایق بالا اساس قانون حاکم بر جذب است که تحت عنوان قانون بیرلامبرت (Beer- Lamberts Law) یا به طور مختصر قانون بیر معروف است. این قانون بیان می­کند که میزان جذب نور توسط یک نمونه جاذب تابعی نمایی از غلظت نمونه و طول مسیر عبور نور از درون نمونه است. این مطلب را می­توان به طریق زیر بیان کرد:

پرتوی از تابش­های الکترو­مغناطیس را در نظر بگیرید که با شدت از درون محلولی حای N ذره جاذب عبور می­کند. میزان جذب پرتو با تعداد ذرات جاذب موجود در مسیر عبور نور متناسب خواهد بود. اگر محلول را به قسمت­های کوچک و مساوی تقسیم کنیم در این صورت تغییر در شدت نور ( )‌ بستگی به تعداد ذرات جاذب موجود در این قسمت خواهد داشت .

در اینجا شدت پرتوی که به قسمت­های بعدی وارد می­شود بخاطر جذب در قسمت­های قبلی مرتباً کاهش می­یابد. بنابراین شدت جذب در هر قسمت به تعداد ذرات جاذب موجود در آن قسمت بستگی داشته و متناسب با شدت پرتوی خواهد بود که وارد آن قسمت می­شود.

(1-1)

(1-2)
در این روابط K ضریب تناسب بوده و علامت منفی نشان­دهنده کاهش شدت نور است. اگر تقسیمات ایجاد شده در محلول بسیار کوچک فرض شوند در این صورت معادله (1- 2) را می­توان به فرم دیفرانسیل و به صورت زیر نوشت.

(1-3)

با جابجایی معادله (1-3 ) و انتگرال­گیری بین دو حد I و I0 (شدت اولیه و نهایی پرتو نور) و بین صفر و N برای تعداد ذرات جاذب موجود در مسیر عبور نور، این معادله بصورت زیر در می­آید.

(1-4)

(1-5)
در این جا N به دو عامل غلظت جسم جاذب (C) و ضخامت محلول جاذب (B) بستگی دارد.

(1-6)

با جایگزینی معادله (1-6) در معادله (1-5) و تبدیل پایه لگاریتم به پایه اعشاری قانون بیر به صورت زیر بیان می­شود.

(1-7)

که در آن a ضریب تناسب، b مسیر عبور نور از درون محلول و c غلظت محلول نسبت به گونه جاذب است. در این جا a که به نام جذب (Absorptivity) معروف است مشخصه گونه جاذب بوده و بعلاوه به طول موج پرتو تابیده شده بستگی دارد. بعبارت دیگر، قانون بیر تنها در مورد تابش­های تک رنگ (Monochromatic) صادق است. عبارت عموما بنام شدت جذب (Absorptivity) خوانده شده و علامت A را به آن اختصاص می­دهند. در نتیجه معادله (1-7) خواهد شد:

(1-8) A=abc

در صورتی که غلظت بر حسب مول بر لیتر بیان شده باشد ضریب جذب به صورت نشان داده شده و بنام ضریب جذب مولی خوانده می­شود. ارتباط خطی بین شدت جذب و طول مسیر در غلظت ثابت از مواد جذب­کننده، یک قاعده کلی است که هیچ استثنایی در مورد آن مشاهده نشده است. از طرف دیگر وقتی که b ثابت باشد غالباً با انحراف­های دارای چنان طبیعت بنیادی می­باشند که محدودیت­های حقیقی برای این قانون ایجاد می­کنند. بعضی دیگر از انحرافات حاصل روشی است که با اندازه­گیری جذب انجام می­گیرد. یا در نتیجه تغییرات شیمیایی است که با تغییرات غلظت همراهند. دو مورد آخر گاهی به ترتیب به نامهای انحراف­های دستگاهی و انحراف­های شیمیایی شناخته می­شوند. قانون بیر در شرح رفتار جذبی محلول­های رقیق موفقیت دارد. به این معنی که یک قانون حد است. در غلظت­های بالا (معمولاً بزرگتر از M01/0 متوسط فاصله بین گونه­های جذب کننده به حدی کاهش می­یابد که هر گونه بر روی توزیع بار گونه­های همسایه خود اثر می­گذارد. این تاثیر متقابل به غلظت بستگی دارد. وقوع این پدیده باعث انحراف­هایی از رابطه خطی بین شدت جذب و غلظت می­شود.

انحرافات از قانون بیر به خاطر وابستگی به ضریب شکست محلول(n) نیز به وجود می­آید. بنابراین اگر تغییرات غلظت باعث تغییرات مهمی در ضریب شکست محلول شود، انحراف­هایی از قانون بیر مشاهده خواهد شد. یک راه برای تصحیح این اثر جانشین کردن کمیت بجای در معادله می­باشد. به طور کلی این تصحیح در مورد غلظت­های کمتر از­M 01/0حائز اهمیت نیست.

انحرافات شیمیایی از قانون بیر از اثر تجمع، تفکیک و یا واکنش گونه­های جذب­کننده با حلال، ناشی می­شود. یک مثال کلاسیک از انحرافات شیمیایی در مورد محلولهای بافری نشده پتاسیم دی­کرومات مشاهده می­شود.

در بیشتر طول موج­ها، ضرایب جذب مولی یون دی­کرومات و دو گونه یونی دیگر کاملاً متفاوتند. بنابراین، جذب هر محلول به نسبت غلظت شکل­های مونومر و دی­مر بستگی دارد. مع ذالک این نسبت با رقیق کردن محلول به طور محسوسی تغییر می­کند و سبب انحرافات بسیار مشهودی از خطی بودن ارتباط بین جذب و غلظت کل کروم می­شود. با این حال جذب مربوط به یون دی­کرومات مستقیما متناسب با غلظت مولی آن باقی می­ماند. این مسئله در مورد یون کرومات نیز صادق است. این حقیقت به آسانی می­تواند توسط اندازه­گیری­ها در محلول اسیدی قوی و یا بازی قوی، در حالی که یکی از این دو گونه اکثریت قاطعی دارد، اثبات شود. چون این انحرافات نتیجه جابجایی در تعادل­های شیمیایی هستند، لذا انحراف­های این سیستم از قانون بیر آشکارتر از مقدار واقعی خواهند بود.

در حقیقت این انحراف­ها را می­توان به آسانی از روی ثابت­های تعادل واکنش­ها و ضرایب جذب مولی یونهای دی­کرومات و کرومات پیش بینی کرد. انحراف دستگاهی از قانون بیر، زمانی مشاهده می­شود که تابش بکارگرفته شده تکرنگ نباشد. این مشاهده یکی دیگر از نمودهای خصلت حدی بودن این رابطه است استفاده از یک پرتو واقعاً تکرنگ برای اندازه­گیری­های جذبی به ندرت عملی است، در نتیجه استفاده از تابش ممکن است منجر به انحراف­هایی از قانون بیر می­شود.

1-6- اجزاء دستگاهها برای اندازه­گیری جذبی:

دستگاه­هایی که عبور یا جذب محلولها را اندازه می­­گیرند از پنج جز سازنده اصلی تشکیل شده­اند الف) یک منبع انرژی تابشی ثابت که شدت آن می­تواند تغییر کند ب) یک وسیله که اجازه بکارگیری ناحیه محدودی از طول موج­ها را می­دهد ج) ظروف شفاف برای نمونه و حلال د) یک آشکارساز تابش یا مبدل که انرژی تابشی را به یک علامت قابل سنجش که معمولا الکتریکی است تبدیل­می­کند ه) یک شناساگر علامت. در شکل (1-1 ) ترتیب معمولی این اجزاء را نشان می­دهد.

شکل (1-1) اجزاء دستگاه­ها برای اندازه­گیری جذب تابش

شناساگر علامت در بیشتر دستگاه­های اندازه­گیری­های جذبی به یک درجه­بندی خطی مجهز است که گسترده از 10 تا 100 واحد را می­پوشاند. خوانده­های مستقیم درصد عبور می­تواند به این نحو بدست آید که ابتدا شناساگر طوری تنظیم می­شود تا هنگام جلوگیری از رسیدن تابش به آشکار ساز توسط یک بستاور عدد صفر را نشان دهد. سپس در حالتی که پرتو از داخل حلال عبور می­کند و بر روی آشکارساز می­افتد شناساگر روی 100 تنظیم می شود این تنظیم به کمک تغییر دادن شدت منبع نور و یا حساسیت آشکار ساز انجام می­گیرد. وقتی که ظرف محتوی نمونه در مسیر پرتو قرار داده شود مشروط بر اینکه آشکار ساز به طور خطی به تغییرات توان پرتو عکس­العمل نشان دهد شناساگر مستقیماً درصد عبور را بدست می­دهد واضح است که یک مقیاس لگاریتمی می­توان روی شناساگر درج نمود تا اجازه خواندن مستقیم جذب را نیز بدهد.

طبیعت و پیچیدگی اجزاء مختلف دستگاه­های جذبی بسته به ناحیه طول موج مورد نظر و چگونگی استفاده از داده­ها به مقدار زیادی فرق می­کنند. مع ذالک صرفنظر از درجه ظرافت وظیفه هر جزء ثابت می­ماند.