فایل بای | FileBuy

مرجع خرید و دانلود گزارش کار آموزی ، گزارشکار آزمایشگاه ، مقاله ، تحقیق ، پروژه و پایان نامه های کلیه رشته های دانشگاهی

فایل بای | FileBuy

مرجع خرید و دانلود گزارش کار آموزی ، گزارشکار آزمایشگاه ، مقاله ، تحقیق ، پروژه و پایان نامه های کلیه رشته های دانشگاهی

بررسی تغییر در کارکرد تلفن سکه‌‌ای BT

در این مقاله دورة بین اواخر دهة 1980 و 1994 را تشریح می کنیم که در خلال آن سرویس تلفن های سکه ای BT از خدمات با کیفیت بسیار پائین عرضه شده در 1987 به فعالیت برجسته تبیدل شد که در 1994 سرویس بسیار خوبی را ارائه می کرد و زیرساخت آن در برابر اندازة مربوطه بود که در 1987 وجود داشت و سود خوبی را برای شرکت به ارمغان آورد
دسته بندی الکترونیک و مخابرات
فرمت فایل doc
حجم فایل 14 کیلو بایت
تعداد صفحات فایل 16
بررسی تغییر در کارکرد تلفن سکه‌‌ای BT

فروشنده فایل

کد کاربری 8044

تغییر در کارکرد تلفن سکه‌‌ای BT

در این مقاله دورة بین اواخر دهة 1980 و 1994 را تشریح می کنیم که در خلال آن سرویس تلفن های سکه ای BT از خدمات با کیفیت بسیار پائین عرضه شده در 1987 به فعالیت برجسته تبیدل شد که در 1994 سرویس بسیار خوبی را ارائه می کرد و زیرساخت آن در برابر اندازة مربوطه بود که در 1987 وجود داشت و سود خوبی را برای شرکت به ارمغان آورد.

امروزه این کسب و کار ماندگار است ویترین شرکت در نظر گرفته می‌شود و در همین حال تصویر آن را حفظ می کند، نه تنها به اهداف اجتماعی خود دست پیدا می‌‌کند بلکه به شکل فزاینده ای امکلانات موجود را بسط و توسعه داده و آن را در اختیار تمامی بخش های جامعه قرار می‌دهد.

اداره کردن یک کسب و کار موفق در محیط رقابتی به عرضة محصولی نیاز دارد که مشتری به خرید آن تمایل داشته باشد و همچنین به کانالی جهت عرضة محصول و زنجیرة عرضه ای نیاز دارد که امکان فروش محصول را به قیمتی بیش از هزینه تولید و عرضه آن برای شما فراهم کند.

این مطلب ساده شده همچون اداره کردن دیگر فعالیتهای تجاری در مورد اداره کردن تلفن سکه ای نیز اعمال می‌شود.

دراین مقاله توضیح می دهیم که چگونه کسب و کار تلفن سکه ای BT از واحد که بر آن معیار ساده منطبق نبود به چیزی مبدل شد که امروزه ROCE بسیار خوبی را ارائه می کند، بیش از 80 درصد سهم بازار را اختیار گرفته و بطور منظم سطح رضایت مشتری بیش از 80 درصد را بدست می‌دهد و همچنان دارای تهد اجتماعی مهمی از سوی شرکت است.

حصولی که ما باید بفروشیم عبارت است از امکان ارتباط در ازاء پرداخت وجه به افرادیک ه با محل سکونت فرد فاصله دارند. برای ترغیب مشتریان به خرید این محصول باید تضمین کنیم که تلفن های سلکه ای در زمان نیاز مشتری به راحتی در دسترس قرار داردن و برای سهولت خرید محصول توسط مشتریان امکان انتخاب روش پرداخت وجود دارد و تلفن های سکه ای سالم هستند و درست کار می‌کنند و امکان انجام ارتباط را فراهم می‌کنند.


ویترین

برای درک اینکه چرا این پیش شرط ها یا پیش نیازهای ساده مربوط به موفقیت کسب و کار در اواخر دهه 1980 حاصل نشدند باید سابقه و پیش زمینه BT‌ را در آن زمان درک کنیم. BT‌ در سال 1984 و با تصویب ماده تا ؟؟؟ مخابرات خصوصی شده و مجوز BT صادر شد. نهاد تنظیمی (OFTEL) تشکیل شده و مدیر کل با پذیرش حفظ منافع مشتریان و تضمین رعایت شرایط مجوز توسط دارند آن مجوز انتخاب شد.

یکی از شرایط مجوز آن بود که BT باید خدمات تلفن همگانی را حفظ می کرد و در شرایط مجوز آمده بود که هیچکدام از باجه های تلفن سکه ای نباید بدون اعلام قبلی به مسئولین محلی و OFTEL برداشته یا حتی جابجا شود و هدف آن تضمین این امر بود که تلفن های سکه ای در جامعه و نیز در مناطق روستایی فقط شوند.

سرویس تلفن سکه ای بعنوان بخشی از تعهد اجتماعی BT‌در نظر گرفته شده و می‌شود و به هنگام بررسی حذف یا عدم حذف تلفن های سکه ای از خیابانها نمی‌توانیم مسائل تجاری معمول را در مورد آن اعمال کنیم.

در سه سال اول بعد از خصوصی سازی، BT تلاش زیادی صرف تمرکز بر بهبود عملکرد کسب و کار اصلی، عرضه روش تجاری تر در انجام این کسب و کار و آماده‌کردن شرکت برای مبارزه در عرصة رقابتی کرد. در این شرایط شاید بتوان درک کرد که خدمات تلفن سکه ای که همیشه ضرر می‌کرد و در حال حاضر تعهد اجتماعی خوانده می شد توجه مدریت را در حد بسیار کمی به خود جلب کرد.

البته آنچه بیش از حد مورد توجه قرا گرفت این واقعیت بود که برای تمامی مشتریان در بریتانیا و در واقع بازدیدکنندگان خارجی بریتانیا، تلفن سکه ای در خیابان ویترین شرکت بود. اگر این ویترین کثیف بوده یا استفاده از آن نانوثانیه باشد احتمال دارد مشتریان فکر کنند که کل شرکت چنین وضعیتی دارد. ‌

این امر اجتناب ناپذیر است که با کاهش وانت کیفیت ضربا ارائه شده با تلفن سکه‌ای، انتقاد از وضعین نامساعد به کشل جدی از شرکت در تمامی بخش های رسانه مطرح شود.

آنان بر تلفن های سکه ای تمرکز داشتند که مشهودترین حضور شرکت را در جامعه‌شان می‌داد و در پائیز 1987 کتر روزی بود که یک روزنامه (یا روزنامه دیگر) به دلایل ارائه خدمات ضعیف را در واقع عدم ارائه خدمات به ما حمله نکند.

با میزان خرابکاری و آسیب رساندن به تجهیزات خدمات عمومی که در آن زمان شایع بود - پاشیدن مواد مضر به داخل کیوسک ها توسط کودکان، شکسته و کنده شدن گوشی توسط افراد بالغ به دلیل آنکه نمی توانستند با شماره موردنظر تماس بگیرند و یا به دلیل گرفتن شماره غلط ـ مسئله از این هم بدتر شده بود. در این شرایط وضعیت باجه های تلفن (کیوسک) بدن شک بدتر شده بود و به واسطة عادات ناخوشایند برخی اعضاء جامعه از دم انها صورت و ظاهر خوشایندی برای استفاده نداشتند.

شرکت دریافت که برای مشخص کردن مسئله باید به فوریت کاری انجام دهد. از میان 77000 باجة تلفن همگانی که در کشوری با جمعیت 56 میلیون نفر وجود داشت تنها 72 درصد از آنها درست کار می کردند و همة تلفن های همگانی فقط یک نوع روش دریافت (سکه) داشتند و عجیب بود که ارزیابی ماهیانة رضایت مشتری سطح نارضیاتی 32 درصد را گزارش کرد. BT با پیشرفت قابل توجه بعد از خصوصی‌ٍازی در بهبود دیگر خدمات نمی توانست به تلفن های سکه ای و وضعیت موجود آنها اجازه دهد تا تصویر این شرکت را خدشه دار کنند.


بررسی دلایل حیاتی برای آنالیز روغن

این یک پیش فرض متداول و در عین حال خطرناک است که روغن نو تمیز می باشد آزمایشهای آنالیز روغن و ذرات مراقبت رطوبت و اندازه گیری گرانروی (ویسکوزیته) شما را قادر می سازد تا شرایط مناسب سیال خود را به هنگام دریافت کنترل نمائید
دسته بندی مکانیک
فرمت فایل doc
حجم فایل 21 کیلو بایت
تعداد صفحات فایل 30
بررسی دلایل حیاتی برای آنالیز روغن

فروشنده فایل

کد کاربری 8044

1- دلایل حیاتی برای آنالیز روغن

1-1- کنترل مطمئن فرآیند پیش اقدام

الف – سلامتی و تمیزی روانکار را قبل از انبار نمودن کنترل نمائید .

این یک پیش فرض متداول و در عین حال خطرناک است که روغن نو تمیز می باشد . آزمایشهای آنالیز روغن و ذرات .مراقبت رطوبت و اندازه گیری گرانروی (ویسکوزیته) شما را قادر می سازد تا شرایط مناسب سیال خود را به هنگام دریافت کنترل نمائید.

ب – سلامتی و تمیزی روانکار را در انبار کنترل نمائید .

روانکار برای جذب آلودگی بسیار مستعد هستند . آزمایشهای شمارنده ذرات . رطوبت و ویسکوزیته می تواند شما را از شرایط مناسب نگهداری روانکار در انبار مطمئن سازد .هم چنین شرایط روانکار هنگامی که در آستانه ریختن به داخل سیستم است بسیارحیاتی می باشد . آنالیز روانکار این اطمینان را در شما بوجود می آورد که روغن ریخته شده داخل سیستم در شرایط مناسب است .

ج - تشخیص سریع فیلترهای معیوب

هیچ ابزاری جهت تشخیص فیلترهای معیوب با آنالیز روغن قابل مقایسه نمی باشد . نشان دهنده اختلاف فشار (Pressure Differential Guage) شاخص کندی برای تشخیص زمان انقضاء مصرف فیلتر می باشد و نیز هنگامی که فیلتر آسیب می بیند اطلاعاتی را ارائه نمی دهد .

د – تأئید محفوظ بودن آببندی ها (Seals) و هواکش ها از آلودگی ها

هزینه رفع آلودگی از روغن 10 برابر هزینه جلوگیری و پیشگیری از آلوده شدن روغن به آلاینده ها می باشد . مراقبت رطوبت و ذرات ، هنگامی که آببندی ها و هواکش ها وظیفه خود را انجام نمی دهند . به عنوان عامل هشدار دهنده به شمار می رود و شما می توانید برای اصلاح و رفع عیوب آنها برنامه ریزی نمائید.

ه – تأیید سالم بودن روغنها

هرگونه تنزل خواص یک روانکار صنعتی با تغییر در ویسکوزیته همراه خواهد بود و قابل تشخیص می باشد . مراقبت روند تغییرات گرانروی شما را از هر گونه تغییرات مطلع ساخته و شما می توانید جهت تشخیص ریشه های این تغییرات و اصلاح آنها اقدام نمائید .

و – اطمینان از اینکه روغن صحیح در سیستم مورد استفاده قرار گرفته است .

در یک برنامه روتین با اندازه گیری گرانروی .مواقعی را که روغن نا مناسب درون سیستم ریخته شده است به سرعت و به راحتی آشکار می سازد.

ز – تأئید اینکه سیستم ها پس از تعمیرات و قبل از بازگشت به سرویس کاری به طور مناسب تمیز شده اند

تأئید تمیزی (Roll-off Cleanliness) سیستم های جدید و تازه تعمیر از طریق آزمایش آنالیز روغن تأئید می نماید که سیستم ها آماده برای استفاده می باشند و احتمال فرسایش زود هنگام و با خرابی پیش بینی نشده حداقل می باشد . هم چنین هر گونه فرسایش که بواسطه بارگذاری غیر عادی و شرایط کارکرد غیر عادی باشد از این طریق آشکار می شود.

2-1 – روشهای نگهداری و تعمیرات پیشگویانه تکنیک های عیب یابی را توسعه می دهد .

الف – تشخیص فرسایش های احتمالی در آینده بسیار نزدیک

هر مکانیسم فرسایش با افزایش تعداد ذرات همراه می باشد .انجام آزمایشات روتین آنالیز روغن .بطور مطمئن شما را از مشکلات احتمالی دستگاه آگاه می سازد و در زمان اختیار بودن دستگاه را به حداکثر می رساند . از این طریق شما می توانید جهت فعالیت های تعمیراتی برنامه ریزی نموده و خرابی های زنجیره ای را به حداقل برسانید .

ب – تشخیص سریع اینکه ذرات مشاهده شده ، ناشی از فرسایش و یا مربوط به آلودگی های روغن می باشد .

بوسیله یک آزمایش ذرات فرسایشی آهنی ،قادر به تشخیص ذرات ناشی از فرسایش و یا ذرات غیر فرسایشی خواهیم بود . عکس العملی که در قبال فرسایش انجام می دهیم به طور کامل با رفتار در قبال آلودگی هایی که بواسطه خرابی آب بندی ها . هواکش و غیره بوجود آمده متفاوت می باشد تشخیص سریع علت مشکل ایجاد شده ،کمک بزرگی در تصمیم گیری صحیح خواهد بود .

ج – در سیستم های روانکاری و هیدرولیک پیشرفته ، منابع احتمالی ذرات را به سرعت می توان با انتخاب یک محل نمونه گیری ثانویه محدود تر نمود .

آلودگی می تواند از نواحی مختلفی در سیستم ایجاد شده باشد .با نمونه گیری قبل و بعد از اجزاء سیستم (فیلترها و غیره) به سرعت می توان عملکرد نادرست یک ناحیه را تشخیص داده و عیب یابی را به ناحیه مربوطه محدود می نمائید.

د- تشخیص شدت مشکل ایجاد شده بوسیله نرخ تغییرات جواب آزمایشات

هنگامی که مراقبت وضعیت یک مشکل را تشخیص می دهد این سؤال همواره در ذهن مشتری خواهد بود : آیا بایستی سریعاً اقدام نمود و یا می توان تا توقف بعدی زمان بندی شده منتظر ماند ؟ ارزیابی نرخ تغییرات آزمایش های آنالیز روغن ،گرانروی و رطوبت به وضوح مشکل دستگاه را آشکار می سازد .

ه – تأئید مشکل ایجاد شده از راههای دیگر

دقیقاً مانند پزشکان که ترجیح می دهند همواره تأئید مجددی از مشکل بدن داشته باشند .کارشناسان تعمیرات و نگهداری (پزشکان دستگاه ) نیز علاقه دارند تأئیدیه ای از مشکل ماشین داشته باشند . بطور مثال :

اگر آنالیز ارتعاشات و شمارش ذرات هر دو مشکلی را تشخیص دهند . شما به عملکرد خود اطمینان دارید چرا که دو مقدار بدست آمده به کمک یک نقطه اشاره دارند . اگر نتایج با یکدیگر موافقت نداشته باشد . این علامتی است تا در جستجوی اطلاعات بیشتری برای تشخیص بود .

و – استنتاج کلی و مشترک از سیستم برای تشخیص سریع ریشه های مشکل

هنگامی که نمونه ها در یک بازه زمانی کوتاه از نقاط مختلف گرفته می شود و تست های شمارنده ذرات ، رطوبت ، فرسایش و ویسکوزیته بر روی آنها انجام می شود همواره می توان یک برداشت کلی از وضعیت سیستم داشت .

بطور مثال ، اگر تمام اجزاءیک سیستم هیدرولیک افزایش فرسایش داشته باشند ولی مقدار ذرات غیر آهنی همچنان مقدار پائین را نشان دهد . احتمالاً فرسایش ایجاد شده با روانکار در ارتباط می باشد (روانکار اشتباه ، آلوده به آب یا تنزل خواص روانکار) . تکنسین هائی که به طور منظم اطلاعات را مرور می کنند به یک احساس برای درک معانی اطلاعات مرتبط با یکدیگر می رسند.

نمونه گیری :

یکی از عوامل مؤثر در موفقیت برنامه آنالیز روغن انجام صحیح نمونه گیری است . تجربه نشان داده است که به علت سادگی کار اغلب به این امر بی توجهی می شود .لذا ضرورت آموزش نیروها و اجرای یک روش نمونه گیری صحیح از اهمیت و اولویت خاصی برخوردار است و توجیه نیروهای اجرایی به حساسیت و دقت مورد نیاز در فرآیند نمونه گیری در عین سادگی به توجه خاصی نیاز دارد .

ذرات فرسایشی حاوی اطلاعات و بازگو کننده نوع فرسایشی است که در سیستم اتفاق افتاده است ، لذا نمونه گیری بایستی بنحوی انجام شود تا میزان و درصد ذرات فرسایشی موجود در نمنه برداشته شده مشابه کل روغن موجود در سیستم باشد . بدین منظور نحوه نمنه گیری پیوسته ، بایستی یکسان باشد . بهترین زمان برای نمونه گیری درست پس از توقف دستگاه می باشد . نمونه نبایستی از کف یا سطح روغن کارتل یا مخزن هیدرولیک و غیره برداشته شود بلکه باید طول شلنگ نمونه گیری طوری انتخاب شود تا از وسط عمق روغن نمونه کشیده شود . ذرات موجود در سطح فوقانی روغن همواره کمتر و در سطح تحتانی آن بیشتر از مقدار واقعی است .زیرا در اثر ته نشین شدن ، ذرات در قسمت کف کارتل تجمع می کنند و در نتیجه نمونه برداشته شده از قسمت میانی واقعی تر شرایط را خواهد داشت . ظرف نمونه بایستی باندازه یک سوم خالی باشد تا بتوان قبل از آزمایش با تکان دادن آنرا کاملاً مخلوط نمود .

فاصله زمانی نمونه گیری به عوامل مختلفی بستگی دارد نظیر : شرایط کاری دستگاه نوع و وضعیت سلامت آن ، کیفیت مواد مصرفی نظیر فیلتر و روغن و غیره .

نکته مهم : شرایط نمونه گیری برای هر قسمت پیوسته یکسان باشد ، یعنی اگر در مرحله اول نمونه از طریق مجرا گیج گرفته شده ، لازم است که تا مراحل بعدی از همین مجرا نمونه گیری شود ، به تجربه ثابت شده که با تغییرات شرایط و نحوه نمونه گیری نتایج نیز دستخوش تغییر شده است .


بررسی و چگونگی تعویض مبرد R-22 در چیلرهای مجتمع پتروشیمی اصفهان

با توجه به آنچه که در گزارش اول ، اسفند 1381 ( بررسی و چگونگی تعویض مبرد R22 در چیلرهای مجتمع پتروشیمی اصفهان) به آن اشاره شد و پروژه‏های انجام شده در خصوص‏تعویضCFC ها در این مجتمع، PROPOSAL حذف برای مبردهای R11 ، R13 ، R502 و R12 صادر شده است و در طی سال گذشته و جاری دستگاههای سبک مجتمـع که با R12 کار می‏کردند ، در زمـان تعمیرات و در واحد تهویه گ
دسته بندی مکانیک
فرمت فایل doc
حجم فایل 18 کیلو بایت
تعداد صفحات فایل 28
بررسی و چگونگی تعویض مبرد R-22 در چیلرهای مجتمع پتروشیمی اصفهان

فروشنده فایل

کد کاربری 8044

1- مقدمه Introduction

با توجه به آنچه که در گزارش اول ، اسفند 1381 ( بررسی و چگونگی تعویض مبرد R-22 در چیلرهای مجتمع پتروشیمی اصفهان) به آن اشاره شد و پروژه‏های انجام شده در خصوص‏تعویضCFC ها در این مجتمع، PROPOSAL حذف برای مبردهای R-11 ، R-13 ، R-502 و R-12 صادر شده است و در طی سال گذشته و جاری دستگاههای سبک مجتمـع که با R-12 کار می‏کردند ، در زمـان تعمیرات و در واحد تهویه گاز آنها با مبرد R-134a با موفقیت تعویض شد که در این زمینه می‏توان به دو دستگاه آبسرد کن و دو دستگاه فریزر اشاره نمود.

واحد تهویه امیدوار است بتواند با انجام پروژه تعویض HCFC R-22 که برای اولین بار در کشور در این مجتمع انجام میگیرد ، رسالت خود را در خصوص تعهدات زیست محیطی و پروتکل مونترال تکمیل نموده و بدین ترتیب در کارنامة خود در خصوص RETROFIT تجربه جدید ( تعویض HCFC ها ) را به دستاوردهای خود اضافه نماید.

البته با توجه به تماس‏ها و مکاتباتی که از طریق اینترنت بعمل آمده است، از مبرد R-507 بجای فرئون R-22 فقط در دستگاههای سرد کننده‏ای که دمای آنها زیر صفر است (LOW AND MEDIUM TEMPERATURE) استفاده میشود و این مسئله هم اخیراً و آنهم بصورت یک پروژة تحقیقاتی که از طرف ASHRAE هزینه شده است ، عنوان گردیده و در واقع استفاده از R-507 بجای R-22 در سیستمهای سرد کننده با دمای بالای صفر (HIGH TEMPERATURE) و آنهم به کمک BRINE ( ضد یخ – اتیلن گلایکول ) برای اولین بار در این مجتمع صورت میگیرد که در صورت موفقیت علاوه بر تعویض HCFC ، مسئله بهینه‏سازی در مصرف انرژی نیز مدنظر قرار خواهد گرفت.

نکته : استفاده از گلایکول اتیلن و پائین آوردن دمای آب چیلر از 8°C به 1°C ، از سیستم میتوان بعنوان ICE CHILLER STORAGE بهره برد. ( باید در نظر داشت که مکانیزمها و سیستمهای بکار برده شده از نظر دما و فشار محدودیتی نداشته باشند )

استفاده از دستگاههای ICE STORAGE در طراحیهای جدید و آتی با دمای (1°C) 36°F علاوه بر بهینه کردن مصرف انرژی ، هزینه‏های لوله‏کشی ، داکت و کانال کشی ، پمپها و وسایل برقی را بدلیل کوچک شدن سایزشان کاهش داد.

2- مبردها Refrigerants

مبرد ماده‏ایست که با جذب حرارت از یک ماده و یا یک محیط و انتقال آن به محیط دیگر بصورت عامل خنک کننده عمل می‏کند. در یک سیکل تراکمی تبخیری ، ماده مبرد با تبخیر و تقطیر تناوبی ، به ترتیب حرارت را در اواپریتور جذب و در کاندنسر دفع مینماید.

مبرد میبایستی دارای خواص شیمیائی ، فیزیکی و ترمودینامیکی ویژه‏ای باشد که استفاده از آن مطمئن و از نظر اقتصادی به صرفه باشد.

البته مبردی وجود ندارد که برای همه کاربردها مناسب باشد ، بهمین دلیل میبایستی در انتخاب یک مبرد شرایطی را در نظر گرفت که بتواند نیازهای یک کاربرد بخصوص را تأمین نماید.

3- مبردهای جایگزین و معیارهای انتخاب

Retrofit Refrigerants & The Guide Lines Of Choise

با شرایط خاصی که در سالهای اخیر برای کرة زمین ایجاد شده است ومسئله صدمه دیدن لایة اوزن ، سازمانهای بین‏المللی استفاده از HCFC ها را نیز همانند CFCها محدود و برای حذف (PHASE OUT) کردن آنها برنامه زمان بندی شده‏ای را در نظر گرفته‏اند و شرکتهای تولید کنندة اینگونه مواد سعی بر این دارند که جایگزینهای مناسبی را تولید و در دسترس مشتریها و مصرف کننده‏ها قرار دهند.

البته همانگونه که در گزارش اول به آن اشاره شده است واحد تهویه در نظر دارد که مسئله بهینه سازی انرژی را در زمان تعویض و انتخاب مبرد جایگزین ، مد نظر قرار داده تا بدین ترتیب در کاهش مصرف سوختهای فسیلی قدم مؤثری برداشته باشد. در نتیجه نسبت به تعویضهای گذشته میتوان اصل ششم یعنی ارزیابی انرژی مصرفی را به پنج اصل گذشته اضافه نمود.

الف ) عملکرد Performance

ب) ایمنی Safety

ج) اطمینان Reliability

د) ملاحظات زیست محیطی Environmental Consideration

هـ) ملاحظات اقتصادی Economic Consideration

و) مصرف انرژی Power Consumption

3-1- عملکرد Performance

ظرفیت برودتی (COOLING CAPACITY) ، ضریب عملکرد (COP) ، گرمای نهان تبخیر مبرد ، چگالی گاز و نقطة جوش مبرد فاکتورهائی است که عملکرد سیستم را مشخص می‏نماید.

3-2- ایمنی Safety

غیر سمی بودن ، غیر قابل اشتعال بودن و فشار کارکرد مبرد بعنوان مهمترین شاخصهای ایمنی مبرد در نظر گرفته میشود.

3-3- اطمینان Reliability

پایداری شیمیائی و سازش و تطابق آن با اجزای مختلف سیستم و مخصوصاً با روغن کمپرسور یکی از ویژگیهای مهم یک مبرد به حساب می‏آید. قابلیت حل شدن مبرد در روغن آنهم در دماهای کارکرد مختلف باید مورد قبول بوده و در برگشت روغن به کارتل کمپرسور خللی بوجود نیاید.

3-4- ملاحظات زیست محیطی Environmental consideration

در انتخاب مبرد جایگزین دو فاکتور مهم زیست محیطی مدنظر است

1- پتانسیل تخریب لایه اوزن OZON DEPLETION POTENTAIL

2- پتانسیل گرمایش گلخانه‏ای GLOBAL WARMING POTENTAIL

3-5- ملاحظات اقتصادی Economic Consideration

با توجه به مقررات جدید EC REQULATION 2037/2000 واضح است که در آینده‏ای نزدیک حذف و از رده خارج شدن CFC ها و بدنبال آنها HCFC ها حتمی است. در نتیجه علاوه بر گران شدن مبردهای قدیمی و نیز به سبب مقررات گمرکی که در واردات و صادرات اینگونه مواد در نظر گرفته شده است ، چنانچه در بازار هم یافت شوند ، بصورت قاچاق و گران خواهند بود ، علاوه بر این ، انتخاب یک مبرد جایگزین نیز در بعضی مواقع میتواند منجر به تعویض کامل کمپرسور ، روغن و یا تمام اتصالات لوله کشی شود بهمین دلیل در انتخاب یک مبرد جایگزین میبایستی مسائل اقتصادی و هزینه‏ها را در نظر گرفت.

3-6- مصرف انرژی Power Consumption

با توجه به مقایسه دقیق خصوصیات مبردها و اطلاعاتی که از طریق اینترنت دریافت شده است میتوان با لحاظ کردن

1) COP Of Refrigerants

2) Surface Coefficient Of Heat Transfer Of Refrigerants

3) Surface Coefficient Of Heat Transfer Of Oils

و حلالیت روغنهای POLYOIL ESTER که نسبت به روغنهای معدنی و الکالین بنزنی شرایط بهتری را دارا هستند ، مسئله مصرف انرژی به ازای هر تن برودت را کاهش و بدین ترتیب علاوه بر انتخاب مبرد ایده‏آل از نظر سازگاری آن با سیستم در بهینه کردن مصرف انرژی میتوان اقدام نمود.

البته استفاده از گلایکول اتیلن بعنوان ضد یخ در آب چیلر این فرصت را به صاحب دستگاه خواهد داد که دمای آب چیلر را پائین‏تر آورده و زمان استراحت دستگاه را بیشتر نماید. بدیـن تـرتیـب تعـداد ON و OFF هـای سیستـم در 24 ساعـت کاهش یافته و در دیماند و آمپرهای راه اندازی که خود باعث افزایش هزینه‏های الکتریکی می‏گردد ، صرفه‏جوئی نماید.

4- انواع مبردها Kinds Of Refrigerants

بطور کلی مبردها ( مبردهای قدیم و جدید ) به سه دسته تقسیم می‏شوند :

1- مادة خالص (SINGLE FLUID) مانند R-22 , R-134a

2- مخلوط آزئوتروپ (AZEOTROPIC) مانند R-502 , R-507

3- مخلوط زئوتروپ (ZEOTROPIC) مانند R-404 A , R-407 C

البته بهترین مبردها ، مبردهائی هستند که از یک ماده خالص تشکیل شده باشند ( به دلیل ایجاد دما و فشار ثابت در اواپریتور و کاندنسر ) ، ولی با توجه به موارد گوناگون و تنوع در کاربرد سیستمهای تبرید ، استفاده از یک مبرد خالص (SINGLE FLUID) همیشه امکان پذیر نبوده و با محدودیت‏هائی مواجه است اما لزوم جایگزینی (RETROFITTING) استفاده از مبردهای مخلوط را هم اجتناب ناپذیر مینماید.

به دلایل زیر انتخاب آزئوتروپها نسبت به زئوتروپها بعنوان جایگزین و تعویض مبردهای تخریب کنندة لایة ازون بهتر است.


بررسی انژکتور چیست و سیستم سوخت رسانی انژکتوری چگونه کار می کند؟

از نظر تئوری یک کیلوگرم سوخت می بایست با 614 کیلوگرم هوا بسوزد تا اشتغال کامل صورت گیرید ولی ان فقط در حالت تئوری صادق است با زیاد کردن هوا در مخلوط فوق ، مخلوط فقیر سوختی پدید می آید که در آن شاهد اکسیژن در گازهای اگزوز هستیم و با زیاد کردن مقدار سوخت در مخلوط ، مخلوط غنی سوختی پدید می آید که در آن صورت شاهد ئیدروکربن نسوخته در گازهای اگزوز
دسته بندی مکانیک
فرمت فایل doc
حجم فایل 9 کیلو بایت
تعداد صفحات فایل 11
بررسی انژکتور چیست و سیستم سوخت رسانی انژکتوری چگونه کار می کند؟

فروشنده فایل

کد کاربری 8044

انژکتور چیست و سیستم سوخت رسانی انژکتوری چگونه کار می کند ؟

از نظر تئوری یک کیلوگرم سوخت می بایست با 6/14 کیلوگرم هوا بسوزد تا اشتغال کامل صورت گیرید . ولی ان فقط در حالت تئوری صادق است . با زیاد کردن هوا در مخلوط فوق ، مخلوط فقیر سوختی پدید می آید که در آن شاهد اکسیژن در گازهای اگزوز هستیم و با زیاد کردن مقدار سوخت در مخلوط ، مخلوط غنی سوختی پدید می آید که در آن صورت شاهد ئیدروکربن نسوخته در گازهای اگزوز می باشیم .

از لحاظ اقتصادی (مصرف کمتر ) بهترین مخلوط ، مخلوط فقیر سوختی با نسبت هوا به سوخت 1/18 است . در حالی که برای بدست آوردن بیشترین توان موتور باید مخلوطی غنی سوختی با نسبت 1/12 الی 1/13 بکار برد .

پس همانطور که دیده می شود محدوده وسیعی از نسبت هوا به سوخت وجود دارد که سیستم سوخت رسانی می بایست طبق شرایط مختلف کار موتور جوابگوی آن باشد . روی زمین اصل ساختمان کاربراتورها پیچیده تر شده و مدارات مختلفی (عمدتاً پنچ مدار) به شرح ذیل در آن بوجود آمده است .

1- مدار اصلی (Main circuit) : که هنگام رانندگی با سرعت و وضعیت عادی ،سوخت و هوا را به نسبت لازم مخلوط کرده و به موتور می فرستد .

2- مدار دور آرام (Idle circuit) : که وظیفه آن فرستادن مخلوط سوخت (با نسبت غلیظ تر) به موتور در هنگامی است که راننده پای خود را از پدال گاز برداشته اشت و موتور با دور آرام کار می کند .

3- پمپ شتاب دهنده (Accelerator pump): که به منظور کاهش لختی و درنگ موتور در هنگام گاز دادن به سیستم کاربراتور اضافه شده و عکس العمل آن را سریعتر می کند . این مدار در هنگام فشرده شدن پدال گاز مقداری سوخت اضافی به مخلوط می پاشد .

4- مدار قدرت (Power enrichment circuit) : که وظیفه آن تهیه مخلوط غنی تری از سوخت به هنگام بالا رفتن خودرو از سربالایی ها و یا حمل بار و وزن اضافه است .

5- مدار شوک (Choke circuit) : که هنگامی بکار می افتد که موتور خودرو سرد بوده و استارت زده شود . این مدار مخلوط غنی سوخت را وارد موتور می کند .

با وجود مدارات بالا و مدارات پیچیده تر دیگر در کاربراتور که از طریق مکانیکی عمل می کنند ، این وسیله پاسخ مناسبی به شرایط مختلف کارکرد موتور نداده و در نتیجه بازده مطلوب بدست نمی آید . از طرفی در این سیستم مصرف سوخت نیز بالا رفته و آلودگی نیز افزایش می یابد .

از این رو سالهاست سیستم سوخت رسانی انژکتور جایگزین کاربراتور شده است . آخرین خودرو کاربراتوری از یک شرکت خودروسازی در ایالات متحده عرضه شده است ، خودرو سوبارو (SUBARO) در سال 1990 بوده و تمامی مدلهای بعد از آن به صورت انژکتوری عرضه شد .

سیستم انژکتوری : سیستم انژکتوری در خودرو در واقع عملکردی مشابه کاربراتور رادارد که همان مخلوط کردن سوخت و هوا نسبت لازم و تزریق آن به موتور است . ولی به دلیل ماهیت اجزاء آن و سیستم متفاوت ، این عمل بسیار دقیقتر و مطلوب تر انجام می شود . ضمناً موجب پایین آمدن مصرف سوخت خودرو و میزان آلودگی هوا می گردد . سیستم سوخت رسانی انژکتوری از سه جزء کلی تشکیل شده است و همانند دیگر سیستم ها دارای ورودی و خروجی هایی است . مغز الکترونیک سیستم (ECU) ، بر اساس این ورودی ها و الگوریتم پیچیده خود معین کننده خروجی های سیستم (زمان پاشش سوخت و مقدار پاشش آن – نسبت هوا به سوخت ) است .

سیستم سوخت رسانی انژکتوری از اجزاء زیر تشکیل شده است :

1- ECU (Electronic Control Unit) :

مغز الکترونیکی (واحد پردازش) سیستم است که با توجه به ورودیهایی که از سنسورهای مختلف به آن وارد می شود و الگوریتم تعریف شده آن نسبت هوا به سوخت مشخص و به انژکتورها فرمان پاشش می دهد . در خودروهای جدید همچنینECU در کار سیستم دلکور دخالت کرده و آن را نیز از دور خارج نموده است .

2- سنسورهای موتور (Engin Sensors) :

به منظور دستیابی به نسبت صحیح مخلوط هوا به سوخت در شرایط کاری مختلف ، سنسورهای زیادی به اجزاء مختلف خودرو نصب شده و اطلاعات از طریق آنها به ECU می رود .


بررسی مطالعه عددی تاثیر میدانهای الکترو مغناطیس بر روی جدایی جریان در ایرفویل

کنترل جریان بصورت دستکاری کردن میدان جریان برای ایجاد یک تغییر مطلوب تعریف می شود جریان از روی یک جسم مانند سطح بیرونی هواپیما یا زیر در یایی را می­توان برای اهداف زیر دستکاری کرد
دسته بندی مکانیک
فرمت فایل doc
حجم فایل 700 کیلو بایت
تعداد صفحات فایل 40
بررسی مطالعه عددی تاثیر میدانهای الکترو مغناطیس بر روی جدایی جریان در ایرفویل

فروشنده فایل

کد کاربری 8044

چکیده

در کار حاضر هدف ما بررسی تاثیر نیروی لورتنس ناشی از تداخل میدان های الکترومغناطیسی و میدان جریان سیال، بر روی جریان سیال یونیزه آب نمک از روی ایرفویل NACA0015 می‌باشد. در اثر تاثیر این نیروها دیده می‌شود که ضریب لیفت افزایش و ضریب درگ کاهش می یابد و همچنین زاویه استال افزایش می یابد.

با توجه به اثرات مثبت این پدیده بر جریان سیال، تحقیقات گسترده ای بر روی این روش انجام شده و در صنعت ساخت هواپیما و زیر دریایی می‌تواند گره گشای برخی نواقص باشد.


عنوان ........................ صفحه

مقدمه........................................

فصل اول- تعاریف مفاهیم به کار رفته در این گزارش

فصل دوم: روش های حل معادلات توربولانس..........

2-1 روش استاندارد ...................

2-1-1 معادلات حامل در مدل استاندارد

2-1-2 مدل سازی لزجت مغشوش در مدل استاندارد

2-2-3 ثابت‌های مدل استاندارد ....

2-2 مدل RNG.............................

2-2-1 معادلات حامل در مدل RNG......

2-2-2 مدل سازی لزجت موثر در مدل RNG

2-2-3 اصلاح چرخش در مدل RNG.........

2-2-4 محاسبه اعداد پرانتل معکوس موثر در مدل RNG

2-2-5 ترم در معادله ..........

2-2-6 ثابت های مدل RNG.............

2-3 مدل هوشمند ....................

2-3-1 معادلات حامل برای مدل هوشمند..

2-3-2 مدل سازی لزجت مغشوش در مدل هوشمند

2-3-3 ثابت های مدل هوشمند..........

فصل سوم: تئوری مدل MHD......................

3-1 روش القای مغناطیس...................

3-2 روش پتانسیل الکتریکی ...............

فصل چهارم: حل جریان و تاثیر نیروی لورنتس.....

4-1 ساده سازی معادلات ماکسول.............

4-2 نحوه ایجاد نیروی لورنتس موازی با جریان

4-3 شرایط مسئله و حل جریان..............

4-4 بررسی نتایج.........................

جمع بندی و پیشنهادات........................

مراجع........................................


مقدمه

کنترل جریان بصورت دستکاری کردن میدان جریان برای ایجاد یک تغییر مطلوب تعریف می شود. جریان از روی یک جسم مانند سطح بیرونی هواپیما یا زیر در یایی را می­توان برای اهداف زیر دستکاری کرد:

1-به تاخیر انداختن گذار

2- به تعویق انداختن جدایش

3-افزایش لیفت

4- کاهش درگ فشاری و اصطکاک پوسته­ای

روشهایی که برای نائل شدن به اهداف بالا مورد استفاده قرار می­گیرد را روشهای کنتر ل جریان می­نامند. دسته بندی‌های مختلفی برای روشهای کنترل جریان وجود دارد. گد-ال-هک [1] روشهای کنترل جریان را در چند بخش تقسیم بندی کرده است. که برای مثال می توان به روشهای زیر اشاره کرد :

روشهایی که روی دیوار یا دور از آن اعمال می شود:

وقتی کنترل جریان روی دیوار اعمال می شود پارامترهای سطح شامل زبری، شکل سطح، تحدب، جابجایی دیوار، دما و تخلخل سطح برای ایجاد مکش ودمش می تواند روی نتایج نهایی که در بالا ذکر شد تاثیر بگذارد.گرم وسرد کردن سطح نیز می­تواند از طریق ایجاد گرادیانهای دانسیته و ویسکوزیته روی جریان تاثیر گذار باشد. همچنین روشهایی که دور از دیوار (سطح) اعمال می شوند مانند بمباران کردن لایه­های برشی از طریق امواج آکوستیک از بیرون سطح، شکست ادیهای بزرگ بوسیله وسایلی که دور ازدیوارند روشهای مفید و سودمندی هستند.

روشهای اکتیو و پسیو:

روش دومی که برای دسته بندی روشهای کنترل جریان وجود دارد به روشهای اکتیو و پسیو موسومند. روشهای پسیو مانند تولید کننده های ورتکس، فلپ ها، ریبلت ها نیازمند مصرف انرژی نیستند. ولی روشهای اکتیو نیاز به انرژی مصرفی دارند مانند مکش و دمش، سطوح متحرک. روش اکتیو دیگری که برای کنترل جریان اطراف ایرفویل استفاده می شود هیدرو دینامیک مغناطیسی یا به اختصار MHD است که باعث افزایش لیفت و کاهش درگ می شود. جریان یک سیال الکترولیت در داخل میدان­های الکتریکی و مغناطیسی باعث اعمال نیروهای حجمی (نیروهای لورنتس ) به ذرات سیال می گردد.

از آغاز دهه 50 میلادی به بعد، نحوه بکار بستن این نیرو در صنعت هوافضا و مکانیک به عنوان یک بحث جدی موضوع تحقیقات جدی محافل علمی بوده است. ایجاد نیروی پیشران برای یک زیر دریایی و یا کشتی، ایجاد نیروی پیشران در جریان مافوق صوت و ماورای صوت، کنترل شوک جریان در دهانه ورودی جت، کنترل پدیده­های پیچیده در جریان سیال در مجاورت دیواره از قبیل لایه مرزی، توربولانس، گردابه جریان، و جدایش از جمله کاربردهای این علم به شمار می رود.


فصل اول- تعاریف مفاهیم به کار رفته در این گزارش

ضریب درگ: نیروی درگ یا مقاوم وارد شده بر جسم برابر است با مجموع درگ فشاری یا شکلی و درگ اصطکاکی یا پوسته ای

(1-1)

(2-2)

نیروی درگ پوسته ای یا اصطکاکی: نیروی درگ اصطکاکی به علت وجود تنش روی سطح حاصل می‌گردد و نیرویی است که توسط سیال بر روی جامداتی که در مسیر جریان قرار می گیرند اعمال می‌شود. انتقال ممنتوم عمود بر سطح ناشی از این نیرو است که موازی با مسیر جریان بر سطح وارد می‌شود.

نیروی درگ شکلی: هر گاه سیال به موازات سطح جریان نداشته باشد به طوری که جهت عبور از جسم جامد ناگزیر به تغییر مسیر گردد (مانند کره) علاوه بر نیروی درگ اصطکاکی نیروی درگ فشاری هم حاصل خواهد شد.

درگ فشاری از اختلاف فشار زیاد در ناحیه ی سکون جلوی جسم و ناحیه کم فشار در قسمت جدا شده پشت جسم در حالتی که دنباله تشکیل شود، ناشی می‌شود. در حالی که درگ اصطکاکی به علت وجود تنش برشی روی سطح ایجاد می‌گردد. سهم هر کدام از دو نوع درگ در نیروی درگ کل، به شکل جسم و به خصوص ضخامت آن وابسته است. به طوری که هرگاه ضخامت جسم صفر باشد یعنی یک صفحه مسطح داشته باشیم، درگ فشاری صفر است و درگ کل برابر است با درگ اصطکاکی.

ضریب درگ از تقسیم زیر به دست می‌آید.

(1-3)

که A سطح جسم عمود بر جهت جریان است.

نیروی لیفت: نیروی لیفت، مولفه عمود بر جریان نیروی وارد شده از طرف سیال بر جسم است. با توجه به تعریف نیروی لیفت، ضریب لیفت را می‌توان به شکل زیر نوشت:

(1-4)

ضریب لیفت تابعی از عدد رینولند و زاویه حمله است یعنی

(1-5)

توجه داشته باشید که زاویه حمله، زاویه بین وترایرفویل وا متداد جریان آزاد سیال است.

استال: با افزایش زاویه حمله، ضریف لیفت در یک زاویه حمله، کاهش و ضریب درگ همچنان افزایش می یابد. به این پدیده استال و به زاویه حمله ای که این پدیده در آن رخ می‌دهد زاویه استال گویند.

جدایی جریان:

اگر فشار در جهت جریان افزایش یابد یعنی ،گویم گرادیان فشار معکوس یا نامطلوب است و اگر فشار در جهت جریان کاهش یابد یعنی گوئیم گرادیان فشار مطلوب است.

در صورتی که فشار در طول صفحه افزایش پیدا کند نیروی مقاوم در برابر حرکت سیال در داخل لایه مرزی علاوه بر نیروی اصطکاکی، شامل نیروی فشار هم خواهد بود. بنابراین سرعت سیال کاهش می یابد. در صورتی که تغییرات فشار زیاد باشد، کاهش ممنتوم هم شدید بوده و ممکن است به صفر برسد و منفی هم بشود که در این حالت، لایه مرزی از مرز جدا شده، جریان سیال معکوس می‌شود که این ناحیه را ناحیه ی جدایی و نقطه شروع این ناحیه را نقطه جدایی جریان می نامیم. ناحیه پایین دست خط جریان جدا شده از مرز را دنباله[1] می نامیم در نقطه جدایی جریان، تغییرات سرعت در جهت عمود بر سطح صفحه صفر است یعنی:

در اثر پدیده جدایش، درگ افزایش یافته و نیروی لیفت کاهش می یابد که به هیچ وجه حالت مطلوب نیست، لذا بایستی تا حد امکان از ایجاد جدایی جریان ممانعت بعمل آورد.

نمایی از جدایی جریان روی یک ایرفویل را در شکل (1-1) می بینید.

شکل 1-1 نمایی از جدایی جریان بر روی یک ایرفویل

فصل دوم: روش های حل معادلات توربولانس

در این مقال، به بررسی مدل های مختلف حل معادلات توربولانس بر پایه ی روش می‌پردازیم.

این روش شامل مدل های استاندارد[2]، RNG [3] و مدل هوشمند[4] می‌باشد.

هر سه مدل دارای فرم های یکسان هستند که شامل معادلات می‌باشند.

تفاوت های عمده میان این سه مدل به شرح زیر است:

نحوه محاسبه لزجت مغشوش

اعداد پرانتل مغشوش که پخش اغتشاشی را کنترل می‌کنند.

ترم های تولید یا اتلاف در معادله

معادلات حامل، روش های محاسبه از جهت مغشوش و همچنین ثابت های مدل برای هر یک از این مدل‌ها ارائه گردیده است. ویژگی های اساسی این مدل ها، شامل تولید اغتشاش، تولید ناشی از شناوری، تاثیرات تراکم پذیری و مدلسازی حرارتی و انتقال جرم می‌باشند.

2-1 روش استاندارد

ساده ترین مدل های توربولانس مدل های دو معادله ای بوده که حل معادلات حامل در آن ها، محاسبه سرعت جریان مغشوش و مقیاس های طولی را به صورت جداگانه ممکن می‌سازد.

مدل استاندارد در Fluent از جمله این مدل هاست و از زمانی که توسط لاندر[5] و اسپالدینگ[6] ارائه شد، به معمول ترین روش برای محاسبات جریان در مهندسی تبدیل شده است.

صلابت، توجیه اقتصادی و دقت قابل ملاحظه‌ی این مدل برای طیف وسیعی از جریان های مغشوش عمومیت یافتن این مدل را در صنعت و مدل سازی حرارتی توجیه می‌کند.

این مدل یک مدل نیمه تجربی بوده که منشا معادلات آن ملاحظات پدیده و نتایج تجربی است.

از آنجایی که نقاط قوت و ضعف مدل استاندارد، شناخته شده است اصطلاحاتی بر روی آن انجام گرفته تا عملکرد آن بهبود یابد. انواع دیگر این مدل که در نرم افزار Fluent قابل دسترسی می‌باشند مدل RNG و هوشمند است.

مدل استاندارد یک مدل نیمه تجربی بر اساس معادلات حاوی انرژی سینتیک اغتشاش (k) و میزان پراکندگی آن است. معادلات حامل این مدل برای k از معادله دقیق ناشی می‌شود، در حالی که معادله حامل از توجیهات فیزیکی ناشی شده و شباهت ناچیزی به معادله ریاضی و دقیق خود دارد.

در به دست آوردن مدل فرض بر آن است که جریان کاملاً مغشوش است و تاثیرات از جهت مولکولی قابل اغماض می‌باشد. بنابراین مدل استاندارد تنها برای جریان های کاملاً مغشوش قابل استفاده می‌باشد.

2-1-1 معادلات حامل در مدل استاندارد

انرژی سینتیک توربولانس (k) و میزان پراکندگی آن از معادلات زیر به دست می آیند:

(2-1)

(2-2)

در این معادلات، تولید انرژی سینتیک توربولانس، ناشی از گرادیان سرعت است. تولید انرژی سینتیکی توربولانس، ناشی از نیروهای شناوری، تاثیر نوسانات انبساطی در جریان های تراکم پذیر بر روی میزان پراکندگی هستند.

ثابت ها بوده، اعداد پرانتل مغشوش برای می‌باشند. ترم های تعریف شده توسط کاربر می‌باشند.

2-1-2 مدل سازی لزجت مغشوش در مدل استاندارد

لزجت مغشوش یا لزجت ادی از ترکیب به صورت زیر به دست می‌آید:

(2-3)

که عددی ثابت است.

2-2-3 ثابت‌های مدل استاندارد

ثابت های این مدل دارای مقادیر زیر می‌باشند.

این ثابت ها از نتایج تجربی آزمایش های انجام شده بر روی هوا و آب به دست آمده است.

2-2 مدل RNG

مدل RNG از تکنیک های پیچیده آماری حاصل شده است. این مدل شباهت زیادی به مدل استاندارد داشته، اما اصلاحات زیر در آن انجام گرفته است.

مدل RNG ترمی اضافی در معادله دارد که دقت محاسبه را برای جریانهای با سرعت بالا، افزایش می‌دهد.

اثر چرخش بر روی اغتشاش، در مدل RNG مد نظر قرار گرفته شده است که دقت را در جریان های چرخشی افزایش می‌دهد.

تئوری مدل RNG برای اعداد پرانتل مغشوش، فرمولی تحلیلی ارائه می‌دهد در حالی که مدل استاندارد از ثابت ها و مقادیر تعریف شده توسط کاربر استفاده می نماید.

در حالی که مدل استاندارد برای اعداد زینولدز بالا قابل استفاده است، تئوری RNG راه حل تحلیلی برای جریان های با اعداد نیولدز پائین ارائه می نماید.

این خصوصیات مدل RNG را دقیق تر و کاربردی تر از مدل استاندارد و برای طیف وسیع تری از جریان ها نشان می‌دهد.

مدل RNG اساساً از معادلات نویر- استوکس[7] به دست می‌آید که برای این منظور از تکینک های ریاضی به نام renormalization group یا به اختصار روش RNG استفاده می‌گردد.

حل تحلیلی باعث شده است این مدل، مدلی با ثابت های متفاوت نسبت به مدل استاندارد بوده و دارای ترم ها و توابع بیشتری در معادلات باشد.

2-2-1 معادلات حامل در مدل RNG

مدل RNG دارای فرمی مشابه به مدل استاندارد می‌باشد

(2-4)

(2-5)

در این معادلات تولید انرژی سینتیک توربولانس، به واسطه گرادیان سرعت، تولید انرژی سینتیک توربولانس به واسطه شناوری، سهم انبساط حرارتی نوسانی در میزان پخش در جریان های مغشوش تراکم پذیر است. همچنین اعداد پرانتل معکوس موثر بر روی بوده، ترم های تعریف شده توسط کاربر می‌باشند.

2-2-2 مدل سازی لزجت موثر در مدل RNG

روش حذف مقیاس در تئوری RNG منتج به معادله ای دیفرانسیلی برای لزجت مغشوش می‌گردد.

(2-6)

با انتگرال گیری از معادله (2-6) می‌توان تغییر لزجت مغشوش موثر را با تغییر عدد رینولدز مشاهده نمود که این امر مدل RNG را برای حل جریان های با اعداد رینولدز پائین و جریان‌های نزدیک دیوار مناسب می‌سازد.

در اعداد رینولدز بالا، معادله زیر داده می‌شود:

(2-7)

توجه به این نکته ضروری است که مقدار در مدل RNG بسیار نزدیک به مقدار اندازه گیری شده تجربی در مدل استاندارد آن یعنی 0.09 است.

در نرم افزار Fluent به طور پیش فرض، لزجت موثر با استفاده از حالات با اعداد رینولدز بالا و از معادله (2-7) محاسبه می‌گردد. با این وجود، این امکان برای کاربر وجود دارد که از روابط دیفرانسیلی داده شده در معادله (2-6) در مواقعی که عدد رینولدز، پائین است استفاده نماید.

2-2-3 اصلاح چرخش در مدل RNG

اغتشاش به طور کلی از چرخش سیال تاثیر می پذیرد. مدل RNG با اصلاح لزجت موثر این تاثیرات را به حساب می آورد. این اصلاح به شکل زیر ظاهر می‌گردد:

(2-8)

که مقدار لزجت موثر محاسبه شده بدون در نظر گرفتن اثرات چرخش جریان با استفاده از معادله(2-6) یا (2-7) است. عددی مربوط به چرخش سیال است که در نرم افزار Fluent محاسبه می‌گردد و ثابت چرخش است که مقدار آن بستگی به این دارد که جریان کاملاً چرخشی یا دارای چرخش موضعی باشد.

اصلاح چرخش همواره بر جریان های متقارن، جریان های چرخشی و جریان های سه بعدی تاثیر می گذارد.

برای چرخش های موضعی برابر با 0.07 و برای جریان های کاملاً چرخشی مقادیر بزرگتری برای در نظر گرفته می‌شود.

2-2-4 محاسبه اعداد پرانتل معکوس موثر در مدل RNG

اعداد پرانتل معکوس موثر، را می‌توان از روابط زیر که از تجزیه و تحلیل توسط تئوری RNG به دست آمده اند، محاسبه کرد.

(2-9)