فایل بای | FileBuy

مرجع خرید و دانلود گزارش کار آموزی ، گزارشکار آزمایشگاه ، مقاله ، تحقیق ، پروژه و پایان نامه های کلیه رشته های دانشگاهی

فایل بای | FileBuy

مرجع خرید و دانلود گزارش کار آموزی ، گزارشکار آزمایشگاه ، مقاله ، تحقیق ، پروژه و پایان نامه های کلیه رشته های دانشگاهی

اندازه گیری یون کروم (III) به روش سینتیکی اسپکتروفوتومتری در پساب رنگی

روش­های سینتیکی اسپکترفوتومتری از جمله روش­های تجزیه دستگاهی به منظور بررسی تغییرات میزان گونه­های موجود در نمونه می­باشند که ضمن دارا بودن صحت، دقت و سرعت عمل بالا دارای هزینه روش بسیار پایین است این خصوصیات کاربرد این تکنیک را در حد وسیعی برای بررسی رفتار ترکیبات رنگی و چگونگی تخریب وحذف آنها از پساب­های صنعتی میسر می­سازد نظر به اهمیت ایجاد آلو
دسته بندی تربیت بدنی
فرمت فایل doc
حجم فایل 1296 کیلو بایت
تعداد صفحات فایل 73
اندازه گیری یون کروم (III) به روش سینتیکی اسپکتروفوتومتری در پساب رنگی

فروشنده فایل

کد کاربری 8044
فهرست مطالب


عنوان صفحه

چکیده

فصل اول : کروم

مقدمه ......................................... 2

1-1- تعریف چرم................................. 4

1-2- لزوم پوست پیرایی ......................... 4

1-3- پوست پیرایی با نمک­های کروم (دباغی کرومی) . 5

1-4- تاریخچه پوست پیرایی با نمک­های کروم (III) .. 5

1-5- معادله واکنش با گاز گوگرد دی اکسید­........ 6

1-6- شیمی نمک­های کروم (III) .................... 6

1-7- شیمی پوست پیرایی با نمک­های کروم (III)...... 7

1-8- عامل های بازدارنده (کند کننده)............ 8

1-9- مفهوم قدرت بازی........................... 8

1-10- نقش عامل­های کندکننده در پوست پیرایی با نمک­های کروم (III) 9

1-11- عامل­های مؤثر بر پوست پیرایی کرومی........ 10

1-12- رنگ­آمیزی چرم­............................. 10

1-13- نظریه تثبیت رنگینه­ها..................... 11

1-14- صنعت چرم سازی و آلودگی محیط زیست......... 11

1-15- منبع­ها و منشأهای پساب کارخانه­های چرم سازی 12

فصل دوم : اسپکتروفوتومتری

2-1- اساس اسپکتروفوتومتری جذبی................. 14

2-2- جذب تابش.................................. 15

2-3- تکنیک­ها و ابزار برای اندازه­گیری جذب تابش ماوراء بنفش و مرئی 15

2-4- جنبه­های کمی اندازه­گیریهای جذبی............ 16

2-5- قانون بیر- لامبرت (Beer - Lamberts Law)......... 17

2-6- اجزاء دستگاهها برای اندازه­گیری جذبی....... 21

فصل سوم : کاربرد روشهای سینتیکی در اندازه­گیری

3-1- مقدمه..................................... 23

3-2- طبقه­بندی روشهای سینتیکی................... 25

3-3- روشهای علمی مطالعه سینتیک واکنشهای شیمیایی 27

3-4- غلظت و سرعت واکنشهای شیمیایی ............. 28

3-5- تاثیر قدرت یونی........................... 28

3-6- تاثیر دما................................. 29

3-7- باز دارنده­ها.............................. 30

3-8- روشهای سینتیکی............................ 30

3-8-1- روشهای دیفرانسیلی....................... 31

3-8-1-1- روش سرعت اولیه........................ 31

3-8-1-2- روش زمان ثابت ........................ 33

3-8-1-3- روش زمان متغیر........................ 34

3-8-2- روشهای انتگرالی......................... 35

3-8-2-1- روش تانژانت .......................... 36

3-8-2-2- روش زمان ثابت......................... 36

3-8-2-3- روش زمان متغیر........................ 37

3-9- صحت دقت و حساسیت روشهای سینتیکی........... 38

فصل چهارم : بخش تجربی

4-1- مواد شیمیایی مورد استفاده................. 40

4-2- تهیه محلول­های مورد استفاده................ 40

4-3- دستگاه های مورد استفاده................... 41

4-4- طیف جذبی.................................. 42

4-5- نحوه انجام کار .......................... 43

4-6- بررسی پارامترها و بهینه کردن شرایط واکنش . 44

4-7- اثر قدرت یونی ............................ 45

4-8- اثر زمان.................................. 47

4-9- شرایط بهینه............................... 49

4-10- روش پیشنهادی برای اندازه گیری کروم....... 49

4-11- منحنی کالیبراسیون........................ 50

4-12- حد تشخیص................................. 53

فصل پنجم: بحث و نتیجه­گیری

5-1- مقدمه..................................... 55

5-2 – بهینه نمودن شرایط........................ 56

5-3- منحنی کالیبراسیون­......................... 56

منابع ومآخذ.................................... 57

فهرست جداول

عنوان صفحه

جدول (3-1) طبقه بندی عمومی روشهای سینتیکی...... 26

جدول (4-1) مواد شیمیایی مورد استفاده........... 40

جدول (4-2). تغییرات بر حسب غلظت های متفاوت KNO3 46

جدول (4-3). تغییرات بر حسب زمان­های متفاوت پس از افزایش آسکوربیک اسید .......................................... 48

جدول (4-4). تغییرات در محدوده غلظتی ppm (3- 05/0) کروم 52

فهرست نمودارها

عنوان صفحه

نمودار (4-1) تشخیص طول­موج ماکسیمم رنگ متیلن­بلو. 42

نمودار (4-2) اثر تخریب رنگ متیلن بلو بدون حضور کروم (III) 44

نمودار (4-3). تغییرات بر حسب غلظت­های متفاوت KNO3 46

نمودار (4-4). تغییرات بر حسب زمان­های متفاوت پس از افزایش آسکوربیک اسید ................................. 48

نمودار (4-5). تغییرات در محدوده غلظتی ppm (3- 05/0) کروم 52

فهرست اشکال

عنوان صفحه

شکل (2-1) اجزاء دستگاه­ها برای اندازه­گیری جذب تابش 21

شکل (3-1) سرعت واکنش نسبت به زمان.............. 23

شکل (3-2) روش سرعت اولیه....................... 32

شکل (3-3) روش زمان ثابت........................ 34

شکل (3-4) روش زمان متغیر....................... 35

شکل (3-5) روش تانژانت.......................... 36

چکیده :

روش­های سینتیکی- اسپکترفوتومتری از جمله روش­های تجزیه دستگاهی به منظور بررسی تغییرات میزان گونه­های موجود در نمونه می­باشند که ضمن دارا بودن صحت، دقت و سرعت عمل بالا دارای هزینه روش بسیار پایین است. این خصوصیات کاربرد این تکنیک را در حد وسیعی برای بررسی رفتار ترکیبات رنگی و چگونگی تخریب وحذف آنها از پساب­های صنعتی میسر می­سازد. نظر به اهمیت ایجاد آلودگی توسط رنگ­های آلی در پساب­های صنعتی ارائه روش­های مناسب و جدید با حداقل هزینه و کارآیی بالا به منظور حذف این گونه ترکیبات مورد نظر پژوهشگران بوده و هست.

در این پروژه علاوه بر ارائه فاکتورهای مؤثر در تخریب رنگ متیلن­بلو می­توان به اندازه­گیری یون کروم که یک ماده سرطان­زاست، پرداخت. یک روش حساس و ساده برای تعیین مقادیر بسیار کم کروم به روش سینتیکی- اسپکتروفوتومتری براساس اثر بازدارندگی کروم در واکنش اکسیدشدن متیلن­بلو توسط آسکوربیک اسید در محیط اسیدی (H2SO4 4 مولار) معرفی شده است. این واکنش به روش اسپکتروفوتومتری و با اندازه­گیری کاهش جذب متیلن­بلو در طول موج 664 نانومتر به روش زمان ثابت استفاده شده است. در محدوده زمانی 8- 5/0 دقیقه و دمای محیط، حد تشخیص ppm 013/0 بوده است و منحنی کالیبراسیون در محدوده ppm (­3- 05/0) از غلظت کروم خطی است.

فصل اول

کروم

مقدمه :

کرم اولین نوع فلز سنگین در پساب است.

یونهای کروم (III) و کروم (VI) برای محیط زیست و هستی بشر مضر هستند.

بر طبق استاندارد موجود مقدار کروم باقیمانده در پساب باید mg/l 5/1 باشد. در کنار شکل ساده یونهای کروم (III) و کروم (VI)، کمپلکس هماهنگ کروم (III)یا کروم (VI)، با پیوندهای ملکولی آلی و غیرآلی وجود دارد.

به طور مثال کمپلکس کروم در رنگها به طور کامل در صنعت نساجی از طریق واکنش شیمیایی بین Cr2O3 و یک نوع از ترکیبات آزو آلی استفاده می­شود. ساختار هماهنگ کمپلکس کروم قبل از تخریب بسیار پایدار و سخت است. این دسته از ترکیب­های کروم حد بالایی ازغلظت کروم را در پساب­های صنعتی ایجادمی­نمایند.

اگر کروم موجود در پساب مستقیماً در محیط آزاد شود به صورت یک عامل واکنش دهنده در محیط عمل نموده و از فعالیت باکتریها به صورت آشکار جلوگیری می­­کند. بنابراین بازده عملیات موجودات بسیار کم می­شود. بنابراین سمیت کروم بسیار زیاد می­باشد. بنابراین اندازه­گیری آن در گونه­های مختلف به ویژه پساب­های صنعتی همواره مورد توجه پژوهشگران بوده و تاکنون مقالات متعددی در این زمینه در مجلات مختلف علمی ارائه شده است.

رسوب دادن شکل مؤثری از فرآیند برداشتن یون کمپلکس کروم است اما قابل اجرا نمی­باشد، با استفاده از روشهای مبادله یون می­توان به طور مؤثرغلطت یون کروم را کاهش داد ولی این کار خیلی عملی نیست. از مهمترین عیب­های این روش بالا بودن هزینه تولید مواده مبادله کننده یونی و بهره­برداری آن است به علاوه در تعویض یون تنها می­توان از محدوده کمی از درجه pH استفاده کرد.

جذب روشی شناخته شده و مؤثر برای انتقال فلز آلوده کننده سنگین می­باشد، اما ظرفیت جذب باید با جاذب شیمیایی مناسب تقویت و یا تغییر داده شود.

مقادیر کم کروم (تا 5/0 درصد) را می­توان به روش رنگ سنجی در محلول قلیایی به صورت کرومات اندازه گرفت؛ اورانیم و سدیم مزاحم­اند ولی وانادیم اثری ندارد. عبور محلول در 365 تا 370 نانومتر یا با استفاده از یک صافی که عبور ماکسیمم آن در قسمت بنفش طیف قرار دارد، اندازه گیری می­شود.

خصلت قلیایی محلول استاندارد به کار گرفته شده برای تهیه منحنی مرجع باید همانند محلول نمونه باشد و ترجیهاً غلظت نمکهای خارجی در دو محلول باید یکی باشد محلول­های استاندارد را می­توان از پتاسیم کرومات با خلوص تجزیه ای تهیه نمود.

هزاران نمونه از کمپلکس­های کروم (III) وجود دارند که به جز چند مورد بقیه شش کوئوردیناسیونی هستند. مشخصه اصلی این ترکیبات بی اثر بودن سنجش آنها از نظر سینتیکی در محلول آبی است و به خاطر همین بی اثر بودن است که این همه نمونه­های کمپلکس از کروم می­توان جدا کرد و به همین دلیل است که قسمت عمده شیمی کلاسیک مربوط به کمپلکس­ها که توسط پژوهشگران اولیه به خصوص یورگنسن و ورنر مطالعه و بررسی شد، کروم را در بر می­گرفت. این کمپلکس­ها حتی درمواردی که از نظر ترمودینامیکی ناپایدارند، در محلول دوام می­آورند.

1-1- تعریف چرم:

چرم مهمترین فراورده­ای است که در فرآیند پوست پیرایی از تأثیر برخی مواد شیمیایی بر پوست به دست می­آید. چرم در برابر هوا و آب نفوذپذیر بوده و در مقابل باکتری ها و عامل­های فیزیکی و شیمیایی محیط مقاومت می­نماید. چرم برای تهیه بسیاری از لوازم مورد نیاز زندگی مناسب است و کاربردهای گوناگونی در زمینه­های مختلف زندگی دارد. با توجه به پوست پیرایی دو نوع چرم ساخته شده و به بازار عرضه می­شود:

الف) چرم­های گیاهی: برای ساخت این نوع چرم از مواد دباغی گیاهی استفاده می­شود.

ب) چرم­های شیمیایی: که برای ساخت آنها از مواد شیمیایی در پوست پیرایی استفاده می­شود این نوع چرم دارای ضخامت کمتری است.

1-2- لزوم پوست پیرایی:

پوست پیرایی فرآیندی فیزیکو شیمیایی برای تبدیل پوست به چرم است، که کالایی با ارزش اما فاسد شدنی را به کالایی فاسد نشدنی تبدیل می­کند. پوست از نظر شیمیایی پلیمری از آمینواسیدها است در واقع از رشته­های پروتئینی تشکیل شده است. این رشته­ها به وسیله عوامل فیزیکی و شیمیایی محیط تجزیه می­شوند. در این صورت زنجیره­های پروتین تشکیل دهنده بافت پوست گسسته می­شوند و پوست کیفیت طبیعی خود را از دست می­دهد.

برای جلوگیری از خرابی پوست می­بایست تغییرات به گونه­ای اعمال شوند که به ماهیت اصلی و ساختار پوست لطمه وارد نسازند. به این تغییرات دباغی پوست (پوست پیرایی) می­گویند.

1-3- پوست پیرایی با نمک­های کروم (دباغی کرومی):

امروزه بیشتر مواد معدنی که در پوست پیرایی به کار می­رود، از نمک­های کروم (III) و به ویژه سولفات کروم (III) تهیه می­شوند. در روش پوست پیرایی با نمک­های کروم، این نمک­ها با الیاف پوست واکنش می­دهند و پایداری بسیار زیادی به الیاف پوست می­بخشند که آن را در برابر دمای بالا مقاوم می­سازند.

چرمی که به این روش ساخته می­شود بسیاری از ویژگی­های مطلوب را ندارد و به وسیله رنگرزی و پوست پیرایی دوباره با مواد گیاهی ویژگی­های یک چرم خوب را پیدا می­نماید.

ویژگی مهم پوست پیرایی کرومی سرعت عمل و راندمان بالای آن است. به همین دلیل این روش پس از کشف آن در زمان کوتاهی رونق زیادی پیدا نمود. به نحوی که در بعضی کشورها تنها برای این ماده برای پوست پیرایی استفاده می­شود.

1-4- تاریخچه پوست پیرایی با نمک­های کروم (III):

نخستین بار در سال 1858 فریدیش ناب روش پوست پیرایی با نمک­هایی که کاتیون آنها هیدرولیز می­شوند، همانند نمک­های آهن (III)، آلومینیم و کروم (III) را ارائه داد این روش از آغاز قرن بیستم به طور روز افزون توسعه یافته است.

بر اثر این کشف بود که چرم سازی از یک کاردستی به صنعت تبدیل شد. نخستین فرآورده­های تجاری چرم کرومی، به آگوست شوتز در سال 1884 نسبت داده شده است. در روش شولتز پوست پیرایی با نمک­های کروم در دو مرحله انجام می­گرفت.

در مرحله اول پوست با یک محلول اسیدی از پتاسیم دی­کرومات (K2CrO7) آغشته شده و در مرحله دوم پتاسیم دی­کرومات در مجاورت یک ماده کاهنده مانند گلوگز به نمک کروم (III) سبز رنگ بر روی سطح پوست تبدیل می­شود.

1-5- معادله واکنش با گاز گوگرد دی اکسید­:

این روش دو مرحله­ای با این که دارای نقص­هایی است اما به چرم تولید شده کیفیت ویژه و مطلوبی می­دهد.

روش دیگری از پوست پیرایی با نمک­های کروم روش یک مرحله­ای است در این روش از یک نمک کروم (III) که به آسانی آبکافت می­شود مانند کروم (III) کلرید و یا سولفات استفاده می­شود.

برای نمونه واکنش­های کروم (III) کلرید و سولفات به صورت زیر می­باشند.

در این روش پوست با یک نمک کروم (III) مانند محلول بازی کروم (III) واکنش می­دهد. در این روش قبل از اضافه کردن نمک کروم (III) محیط را اسیدی می­کنند و سپس پوست را در آن قرار می­دهند. در این شرایط توانایی ترکیب شدن نمک کروم با پروتئین پوست کاهش می­یابد و در نتیجه نمک کروم امکان نفوذ کردن به درون پوست را پیدا می­کند. پس از اینکه به درون لیف نفوذ کرد pH را بالا می­برند. در نتیجه این تغییرات نمک کروم با پوست واکنش می­دهد.

1-6- شیمی نمک­های کروم (III):

نمک­های کروم (III) در اسیدهای قوی حل می­شود اما در pH بالاتر از 4 به صورت کروم (III) هیدروکسید رسوب می­کند. این نمک­ها می­توانند با تعدادی از مواد آلی واکنش دهند. در pHهای بالا محلول این نمک­ها رنگی­اند.

1-7- شیمی پوست پیرایی با نمک­های کروم (III):

در محلول کروم (III) نیترات، یون نیترات به صورت و یون کروم (III) وجود دارد و تغییری که در این یون کمپلکس به وجود می­آید اساس شیمی پوست پیرایی با نمک­های کروم (III) را تشکیل می­دهد.

واکنش­هایی که در محلول این یون روی می­دهد اساساً دو نوع است:

الف) آزاد شدن یون هیدرونیوم بر اثر آبکافت کاتیون کمپلکس و تولید یک نمک بازی براساس معادله شیمیایی زیر:

به هیمن دلیل محلول نمک­های کروم (III) خاصیت اسیدی دارند. انجام این واکنش که در آن یون تولید می­شود، دلیل روشنی بر وجود مولکولهای آب به صورت لیگاند در کاتیون کمپلکس کروم (III) در محلول نمک­های آن است.

ب) جانشینی شدن آنیون ها به عنوان لیگاند به جای مولکولهای آب در کاتیون کمپلکس در یک واکنش تعادلی در غلظت و دمای معین که معادله شیمایی آن به صورت زیر است:

در مجاورت نمک­های خنثی مانند KCl احتمال ندارد که کمپلکس­های آنیونی نیز به وجود آید. یون دی­اکوآتتراکلروکرومات (III)

یون­های کلرید موجود در این کملکس با نقره نیترات رسوب نمی­دهند.

1-8- عامل های بازدارنده (کند کننده):

این عامل­ها آنیونی هستند و با اتم فلز در یون کمپلکس پیوند تشکیل می­دهند. این پدیده به یون پوشاندن اتم مرکزی هم معروف است و در بررسی مکانیسم فرآیند پوست پیرایی با نمک­های کروم نیر مفید می­باشد.

از این رو، محلول­هایی که دارای لیگاندهای قوی­تر هستند به محلول­های کندکننده معروفند.

آنیون اسیدهای کربوکسیلیک می­تواند با دو اتم کروم و یک گروه پلساز ، یک حلقه شش ضعلی تشکیل دهند. برای نمونه داریم:

تشکیل کمپلکس با آنیون اسیدهای آلی دو ظرفیتی:

تشکیل کمپلکس بایون اکسالات:


کمپلکس کروم (III) با یون اکسالات به اندازه­ای پایدار است که در مجاورت مقدار زیادی از یون­های اکسالات از پیشرفت فرآیند پوست پیرایی جلوگیری می­نماید.

1-9- مفهوم قدرت بازی:

کروم میل شدیدی برای جذب یون­های هیدروکسید در محلول دارد. واکنش کروم با این یون را می­توان به صورت واکنش سه مرحله­ای با نخستین، دومین و سپس سومین یون هیدروکسید نوشت. تمایل نمک­های کروم در نخستین مرحله واکنش بسیار زیاد است و حتی در pH=2 که غلظت یون برابر 12-10 مول بر لیتر می باشد، واکنش انجام می­پذیرد.

با افزایش pH محلول در حدود 3 تا 4 دومین یون نیز وارد واکنش می­شود. با افزایش بیشتر pH سومین یون نیز وارد واکنش می­گردد.

(قدرت بازی %33)

(قدرت بازی %66)

(قدرت بازی %100)

نمک­های کروم (III) مورد استفاده در پوست دارای قدرت بازی 33 تا 45 درصد می­باشد. همانطور که قدرت بازی به معنی یون­های با کروم (III) است قدرت اسیدی به بخش اسیدی نمک نسبت داده می­شود. بنابراین مجموع قدرت اسیدی و بازی محلول نمک برابر صد است.

1-10- نقش عامل­های کندکننده در پوست پیرایی با نمک­های کروم (III):

یون کلرید () می­تواند در ساختار یون کمپلکس وارد شود یا در محلول آزاد بماند. این یون تمایل کمی برای ورود به ساختار کمپلکس کروم (III) دارد. اما یون­های دیگر ممکن است تمایل بیشتری برای ورود به ساختار کمپلکس داشته باشد.

برای مثال یون سولفات درنقش یک لیگاند دو دندانه­ایی تمایل زیادی به وارد شدن به ساختار کمپلکس دار می باشد و دو محل کوئوردیناسیون در کمپلکس های کروم (III) را اشغال می­نماید.

واکنش تعداد زیادی از مواد آلی با کروم (III) در محلول و تشکیل کمپلکس­های پایدار مورد بررسی فراوان قرار گرفته است. از این مواد آلی به عنوان عوامل­ کندکننده در فرآیند پوست پیرایی با نمک های کروم (III) استفاده می­شود.


اندازه گیری یون کروم (III) در پساب رنگی

روش­های سینتیکی اسپکترفوتومتری از جمله روش­های تجربه دستگاهی به منظور بررسی تغییرات میزان گونه­های موجود در نمونه می­باشند که ضمن دارا بودن صحت، دقت و سرعت عمل بالا دارای هزینه روش بسیار پایین است این خصوصیات کاربرد این تکنیک را در حد وسیعی برای بررسی رفتار ترکیبات رنگی و چگونگی تخریب وحذف آنها از پساب­های صنعتی میسر می­سازد نظر به اهمیت ایجاد آلو
دسته بندی نساجی
فرمت فایل doc
حجم فایل 1303 کیلو بایت
تعداد صفحات فایل 75
اندازه گیری یون کروم (III) در پساب رنگی

فروشنده فایل

کد کاربری 8044

چکیده :

روش­های سینتیکی- اسپکترفوتومتری از جمله روش­های تجربه دستگاهی به منظور بررسی تغییرات میزان گونه­های موجود در نمونه می­باشند که ضمن دارا بودن صحت، دقت و سرعت عمل بالا دارای هزینه روش بسیار پایین است. این خصوصیات کاربرد این تکنیک را در حد وسیعی برای بررسی رفتار ترکیبات رنگی و چگونگی تخریب وحذف آنها از پساب­های صنعتی میسر می­سازد. نظر به اهمیت ایجاد آلودگی توسط رنگ­های آلی در پساب­های صنعتی ارائه روش­های مناسب و جدید با حداقل هزینه و کارآیی بالا به منظور حذف این گونه ترکیبات مورد نظر پژوهشگران بوده و هست.

در این پروژه علاوه بر ارائه فاکتورهای مؤثر در تخریب رنگ متیلن­بلو می­توان به اندازه­گیری یون کروم که یک ماده سرطان­زاست، پرداخت. یک روش حساس و ساده برای تعیین مقادیر بسیار کم کروم به روش سینتیکی- اسپکتروفوتومتری براساس اثر بازدارندگی کروم در واکنش اکسیدشدن متیلن­بلو توسط پتاسیم نیترات در محیط اسیدی (H2SO4 4 مولار) معرفی شده است. این واکنش به روش اسپکتروفوتومتری و با اندازه­گیری کاهش جذب متیلن­بلو در طول موج 664 نانومتر به روش زمان ثابت استفاده شده است.

فهرست مطالب

عنوان صفحه

چکیده

فصل اول : اسپکتروفوتومتری

1-1- اساس اسپکتروفوتومتری جذبی................. 14

1-2- جذب تابش.................................. 15

1-3- تکنیک­ها و ابزار برای اندازه­گیری جذب تابش ماوراء بنفش و مرئی 15

1-4- جنبه­های کمی اندازه­گیریهای جذبی............ 16

1-5- قانون بیر- لامبرت (Beer - Lamberts Law)......... 17

1-6- اجزاء دستگاهها برای اندازه­گیری جذبی....... 21

فصل دوم : کاربرد روشهای سینتیکی در اندازه­گیری

2-1- مقدمه..................................... 23

2-2- طبقه­بندی روشهای سینتیکی................... 25

2-3- روشهای علمی مطالعه سینتیک واکنشهای شیمیایی 27

2-4- غلظت و سرعت واکنشهای شیمیایی ............. 28

2-5- تاثیر قدرت یونی........................... 28

2-6- تاثیر دما................................. 29

2-7- باز دارنده­ها.............................. 30

2-8- روشهای سینتیک............................. 30

2-8-1- روشهای دیفرانسیلی....................... 31

2-8-1-1- روش سرعت اولیه........................ 31

2-8-1-2- روش زمان ثابت ........................ 33

2-8-1-3- روش زمان متغیر........................ 34

2-8-2- روشهای انتگرالی......................... 35

2-8-2-1- روش تانژانت .......................... 36

2-8-2-2- روش زمان ثابت......................... 36

2-8-2-3- روش زمان متغیر........................ 37

2-9- صحت دقت و حساسیت روشهای سینتیکی........... 38

فصل سوم: کروم

مقدمه ......................................... 2

3-1- تعریف چرم................................. 4

3-2- لزوم پوست پیرایی ......................... 4

3-3- پوست پیرایی با نمک­های کروم (دباغی کرومی) . 5

3-4- تاریخچه پوست پیرایی با نمک­های کروم (III) .. 5

3-5- معادله واکنش با گاز گوگرد دی اکسید­........ 6

3-6- شیمی نمک­های کروم (III) .................... 6

3-7- شیمی پوست پیرایی با نمک­های کروم (III)...... 7

3-8- عامل های بازدارنده (کند کننده)............ 8

3-9- مفهوم قدرت بازی........................... 8

3-10- نقش عامل­های کندکننده در پوست پیرایی با نمک­های کروم (III) 9

3-11- عامل­های مؤثر بر پوست پیرایی کرومی........ 10

3-12- رنگ­آمیزی چرم­............................. 10

3-13- نظریه تثبیت رنگینه­ها..................... 11

3-14- صنعت چرم سازی و آلودگی محیط زیست......... 11

3-15- منبع­ها و منشأهای پساب کارخانه­های چرم سازی 12

فصل چهارم : بخش تجربی

4-1- مواد شیمیایی مورد استفاده................. 40

4-2- تهیه محلول­های مورد استفاده................ 40

4-3- دستگاه های مورد استفاده................... 41

4-4- طیف جذبی.................................. 42

4-5- نحوه انجام کار .......................... 43

4-6- بررسی پارامترها و بهینه کردن شرایط واکنش . 44

4-7- بررسی اثر غلظت سولفوریک اسید ............. 45

4-8- بررسی اثر غلظت متیلن بلو ................. 48

4-9- بررسی اثر غلظت آسکوربیک اسید ............. 51

4-10- شرایط بهینه ............................. 54

4-11- روش پیشنهادی برای اندازه گیری کروم ...... 54

فصل پنجم: بحث و نتیجه­گیری

5-1- مقدمه..................................... 55

5-2 – بهینه نمودن شرایط........................ 56

منابع ومآخذ.................................... 57


فهرست جداول

عنوان صفحه

جدول (3-1). طبقه بندی عمومی روشهای سینتیکی..... 26

جدول (4-1). مواد شیمیایی مورد استفاده.......... 40

جدول (4-2). تغییرات بر حسب غلظت های متفاوت H2SO4 46

جدول (4-3). تغییرات بر حسب غلظت های متفاوت MB 48

جدول (4-4). تغییرات برحسب غلظت های متفاوت AA 52

فهرست نمودارها

عنوان صفحه

نمودار (4-1) تشخیص طول­موج ماکسیمم رنگ متیلن­بلو. 42

نمودار (4-2) اثر تخریب رنگ متیلن بلو بدون حضور کروم (III) 44

نمودار (4-3). تغییرات بر حسب غلظت های متفاوت H2SO4 46

نمودار (4-4). تغییرات بر بر حسب غلظت های متفاوت MB 48

نمودار (4-5). تغییرات در برحسب غلظت های متفاوت AA 52

فهرست اشکال

عنوان صفحه

شکل (2-1) اجزاء دستگاه­ها برای اندازه­گیری جذب تابش 21

شکل (3-1) سرعت واکنش نسبت به زمان.............. 23

شکل (3-2) روش سرعت اولیه....................... 32

شکل (3-3) روش زمان ثابت........................ 34

شکل (3-4) روش زمان متغیر....................... 35

شکل (3-5) روش تانژانت.......................... 36

فصل اول

اسپکتروفوتومتری

1-1- اساس اسپکتروفوتومتری جذبی:

این روش بر اساس عبور پرتوی از اشعه الکترو مغناطیس از درون نمونه و سنجش میزان جذب آن قرار دارد. هنگامی که اشعه الکترو­مغناطیس از داخل یک محلول می­گذرد مقداری از آن بطور انتخابی جذب نمونه می­شود. به طوری که شدت نور خارج شده کمتر از شدت نوری است که به محلول تابیده شده است. این پدیده در مورد جذب تابش های مرئی به وضوح دیده می­شود.

مثلا اگر نوری سفید از میان محلول سولفات مس عبور داده شود، محلول آبی رنگ به نظر می­رسد زیرا یون­های مس محلول جزء قرمز پرتو تابیده شده را جذب کرده و مکمل آن که آبی است از خود عبور می­دهد.

اندازه­گیری جذب تابش­های مرئی – ماوراء بنفش راه مناسبی را برای تجزیه تعداد بیشماری از گونه­های آلی و معدنی فراهم می­آورد. تابش در این نواحی دارای انرژی کافی برای انتقالات الکترونی الکترونهای والانس است. اگر نمونه در حالت گازی از اتم ها و یا ملکول­های ساده تشکیل شده باشد، طیف جذبی آن معمولاً مرکب از یکسری خطوط تیز و کاملاً مشخص است که مربوط به تعداد محدود انتقالات الکترونیکی مجاز می­باشد.

طبیعت ناپیوسته فرآیند جذب، درجه بالایی از گزینش پذیری را به تجزیه­هایی می­دهد که بر پایه چنین اندازه­گیری­هایی قرار گرفته باشند، در مقابل، طیف­های جذبی یون­ها و ملکولها در محلول معمولاً شامل نوارهای پهن می­باشند که بخشی از آنها از همپوشانی انتقالات ارتعاشی و گاهی اوقات چرخشی بر روی انتقالات الکترونیکی ارتعاشی و گاهی اوقات چرخشی بر روی انتقالات الکترونیکی ناشی می­شود. در نتیجه هر جذب الکترونیکی را یکسری خطوط پهن نزدیک به هم که به نظر پیوسته می­رسند، همراهی می­کنند. بعلاوه پهن شدن خطوط در نتیجه نیروهای بین ملکولی رخ می­دهد. این نوع طیف­ها گزینش پذیری کمتری دارند.

1-2- جذب تابش:

وقتی که تابش از درون یک لایه شفاف جامد، مایع یا گاز عبور کند برخی از فرکانسها ممکن است توسط فرآیندی بنام جذب، بطور انتخابی حذف شوند. در اینجا انرژی بیشتر یا حالات تحریک شده ارتقاء می­یابند.

اتمها یا مولکولهای تحریک شده دارای عمر نسبتا کوتاهی می­باشند و تمایل دارند تا بعد از حدود 10 ثانیه به حالت­های عادی خود برگشت کنند. معمولا انرژی آزاد شده در این فرآیند در دستگاه بصورت گرما ظاهر می­شود. مع ذالک در بعضی موارد گونه­های تحرکی شده ممکن است یک تغییر شیمیایی را متحمل شوند که انرژی را جذب می­کند (یک واکنش فتوشیمیایی) و در موارد دیگر تابش در شکل فلوئورسانس یا فسفرسانس (معمولاً با طول موجهای بلند تر) دوباره نشر می­شوند.

اتمها مولکولها و یا یونها تعداد محدودی ترازهای انرژی کوانتیده گسسته دارند برای اینکه جذب تابش انجام گیرد انرژی فوتون تحریک کننده باید با تفاوت انرژی بین حالت عادی و یکی از حالتهای تحریک شده گونه جذب کننده یکی باشد.

از آنجایی که این تفاوت انرژی برای هر گونه منحصر به فرد است مطالعه فرکانسهای تابش جذب شده وسیله­ای را برای مشخص کردن مواد سازنده نمونه­ای از ماده فراهم می­آورد. برای این منظور یک منحنی از کاهش در توان نور تابنده (جذب) بصورت تابعی از طول موج یا فرکانس بطور تجربی ترسیم می­شود. منحنیهای نمونه­ای از این نوع، طیف­های جذبی نامیده می­شوند.

1-3- تکنیک­ها و ابزار برای اندازه­گیری جذب تابش ماوراء بنفش و مرئی:

اندازه­گیری جذب تابشهای ماوراء بنفش و مرئی راه مناسبی را برای تجزیه تعداد بیشماری از گونه­های آلی و معدنی فراهم می­آورد. تابش در این نواحی دارای انرژی کافی برای انتقال­های الکترونیکی الکترونهای والانس در لایه بیرونی است اگر نمونه در حالت گازی از اتمها و یا مولکولهای ساده تشکیل شده باشد طیف جذبی آن معمولاً مرکب از یک سری خطوط تیز و کاملاً مشخص است که مربوط به تعداد محدود انتقالات الکترونیکی مجاز می­باشد. طبیعت ناپیوسته فرآیند جذب، درجه بالایی از گزینش پذیری را به تجزیه­هایی می­دهد که بر پایه چنین اندازه­گیریهایی قرار گرفته باشند. در مقابل طیفهای یونها و مولکولها در محلول معمولاً حاوی نوارهای پهن می­باشند که بخشی از آنها از قرار گرفتن تغییرات انرژیهای ارتعاشی و گاهی چرخشی بر روی انتقالات الکترونی ناشی می­شود. در نتیجه هر جذب الکترونی را یک سری خطوط آنقدر بهم نزدیک که به نظر پیوسته می­رسند همراهی می­کند. بعلاوه، پهن شدن خطوط در نتیجه نیروهای بین مولکولی رخ می­دهد که این نیروها بین مولکولها یا یونهای بصورت نزدیک بسته­بندی شده در یک محیط مادی فشرده، عمل می­کنند. این نوع طیفها گزینش پذیری کمتری دارند. از طرف دیگر نوارهای پهن برای اندازه­گیری­های کمی دقیق، مناسب­ترند.

1-4- جنبه­های کمی اندازه­گیریهای جذبی:

جذب تابش الکترومغناطیسی توسط گونه M می­تواند به صورت یک فرایند برگشت ناپذیر دو مرحله­ای تلقی شود که اولین مرحله این فرآیند را می­توان بصورت زیر نمایش داد.

در اینجا M* نشان دهنده ذره اتمی یا مولکولی در حالت تحریک شده است که از جذب فوتون ناشی می­شود. طول عمر حالت تحریک شده کوتاه است (8-10 تا 9-10 ثانیه) و باوجود این حالت توسط یکی از چندین فرآیند آسایشی خاتمه داده می­شود. متداولترین نوع آسایش شامل تبدیل تحریک به گرماست؛ یعنی،

گرما

آسایش می­تواند از تجزیه M* جهت تشکیل گونه­های جدید نیز ناشی شود. چنین فرآیندی را واکنش فوتوشیمیایی می­نامند. ممکن است که آسایش منتج به نشر دوباره تابش بصورت فلوئورسانس یا فسفرسانس شود. مهم است به این نکته توجه شود که طول عمر M* بقدری کوتاه است که غلظت آن در هر لحظه تحت شرایط عادی، قابل صرفنظر کردن خواهد بود. بعلاوه، مقداری انرژی حرارتی تولید شده معمولاً قابل اندازه­گیری نیست. بنابراین، اندازه­گیریهای جذبی این حسن را دارند که حد اقل آشفتگی را در دستگاه تحت مطالعه ایجاد می­کنند.

1-5- قانون بیر- لامبرت (Beer - Lamberts Law):

به سادگی می­توان دریافت که میزان جذب نور توسط یک گونه جاذب بستگی به تعداد یونها و یا ملکولهای جسم جاذب در مسیر عبور نور دارد و در نتیجه با افزایش غلظت ذرات جاذب، شدت جذب نیز افزایش می­یابد. از طرفی هر چه قدر طول مسیر عبور نور از درون نمونه افزایش یابد، جذب نور با شدت بیشتری انجام خواهد گرفت. سومین عاملی که میزان جذب نور به آن بستگی دارد احتمال جذب فوتون توسط ذرات جاذب فوتون­هاست به طوری که اجسام مختلف احتمال­های متفاوتی برای جذب پرتوی فوتون­ها از خود نشان می­دهند.

حقایق بالا اساس قانون حاکم بر جذب است که تحت عنوان قانون بیرلامبرت (Beer- Lamberts Law) یا به طور مختصر قانون بیر معروف است. این قانون بیان می­کند که میزان جذب نور توسط یک نمونه جاذب تابعی نمایی از غلظت نمونه و طول مسیر عبور نور از درون نمونه است. این مطلب را می­توان به طریق زیر بیان کرد:

پرتوی از تابش­های الکترو­مغناطیس را در نظر بگیرید که با شدت از درون محلولی حای N ذره جاذب عبور می­کند. میزان جذب پرتو با تعداد ذرات جاذب موجود در مسیر عبور نور متناسب خواهد بود. اگر محلول را به قسمت­های کوچک و مساوی تقسیم کنیم در این صورت تغییر در شدت نور ()‌ بستگی به تعداد ذرات جاذب موجود در این قسمت خواهد داشت.

در اینجا شدت پرتوی که به قسمت­های بعدی وارد می­شود بخاطر جذب در قسمت­های قبلی مرتباً کاهش می­یابد. بنابراین شدت جذب در هر قسمت به تعداد ذرات جاذب موجود در آن قسمت بستگی داشته و متناسب با شدت پرتوی خواهد بود که وارد آن قسمت می­شود.


اندازه­ گیری یون کروم (III) در پساب رنگی

روش­های سینتیکی اسپکترفوتومتری از جمله روش­های تجربه دستگاهی به منظور بررسی تغییرات میزان گونه­های موجود در نمونه می­باشند که ضمن دارا بودن صحت، دقت و سرعت عمل بالا دارای هزینه روش بسیار پایین است
دسته بندی نساجی
بازدید ها 34
فرمت فایل doc
حجم فایل 1301 کیلو بایت
تعداد صفحات فایل 67
اندازه­ گیری یون کروم (III) در پساب رنگی

فروشنده فایل

کد کاربری 15
کاربر

روش­های سینتیکی- اسپکترفوتومتری از جمله روش­های تجربه دستگاهی به منظور بررسی تغییرات میزان گونه­های موجود در نمونه می­باشند که ضمن دارا بودن صحت، دقت و سرعت عمل بالا دارای هزینه روش بسیار پایین است. این خصوصیات کاربرد این تکنیک را در حد وسیعی برای بررسی رفتار ترکیبات رنگی و چگونگی تخریب وحذف آنها از پساب­های صنعتی میسر می­سازد. نظر به اهمیت ایجاد آلودگی توسط رنگ­های آلی در پساب­های صنعتی ارائه روش­های مناسب و جدید با حداقل هزینه و کارآیی بالا به منظور حذف این گونه ترکیبات مورد نظر پژوهشگران بوده و هست.

در این پروژه علاوه بر ارائه فاکتورهای مؤثر در تخریب رنگ متیلن­بلو می­توان به اندازه­گیری یون کروم که یک ماده سرطان­زاست، پرداخت. یک روش حساس و ساده برای تعیین مقادیر بسیار کم کروم به روش سینتیکی- اسپکتروفوتومتری براساس اثر بازدارندگی کروم در واکنش اکسیدشدن متیلن­بلو توسط پتاسیم نیترات در محیط اسیدی (H2SO4 4 مولار) معرفی شده است. این واکنش به روش اسپکتروفوتومتری و با اندازه­گیری کاهش جذب متیلن­بلو در طول موج 664 نانومتر به روش زمان ثابت استفاده شده است.

فهرست مطالب

چکیده

فصل اول : اسپکتروفوتومتری

1-1- اساس اسپکتروفوتومتری جذبی14

1-2- جذب تابش 15

1-3- تکنیک­ها و ابزار برای اندازه­گیری جذب تابش ماوراء بنفش و مرئی15

1-4- جنبه­های کمی اندازه­گیریهای جذبی16

1-5- قانون بیر- لامبرت (Beer - Lamberts Law17

1-6- اجزاء دستگاهها برای اندازه­گیری جذبی21

فصل دوم : کاربرد روشهای سینتیکی در اندازه­گیری

2-1- مقدمه 23

2-2- طبقه­بندی روشهای سینتیکی25

2-3- روشهای علمی مطالعه سینتیک واکنشهای شیمیایی27

2-4- غلظت و سرعت واکنشهای شیمیایی 28

2-5- تاثیر قدرت یونی 28

2-6- تاثیر دما 29

2-7- باز دارنده­ها 30

2-8- روشهای سینتیک 30

2-8-1- روشهای دیفرانسیلی 31

2-8-1-1- روش سرعت اولیه31

2-8-1-2- روش زمان ثابت 33

2-8-1-3- روش زمان متغیر34

2-8-2- روشهای انتگرالی 35

2-8-2-1- روش تانژانت 36

2-8-2-2- روش زمان ثابت36

2-8-2-3- روش زمان متغیر37

2-9- صحت دقت و حساسیت روشهای سینتیکی38

فصل سوم: کروم

مقدمه 2

3-1- تعریف چرم 4

3-2- لزوم پوست پیرایی 4

3-3- پوست پیرایی با نمک­های کروم (دباغی کرومی) 5

3-4- تاریخچه پوست پیرایی با نمک­های کروم (III) 5

3-5- معادله واکنش با گاز گوگرد دی اکسید­6

3-6- شیمی نمک­های کروم (III) 6

3-7- شیمی پوست پیرایی با نمک­های کروم (III7

3-8- عامل های بازدارنده (کند کننده8

3-9- مفهوم قدرت بازی 8

3-10- نقش عامل­های کندکننده در پوست پیرایی با نمک­های کروم (III9

3-11- عامل­های مؤثر بر پوست پیرایی کرومی10

3-12- رنگ­آمیزی چرم­10

3-13- نظریه تثبیت رنگینه­ها11

3-14- صنعت چرم سازی و آلودگی محیط زیست11

3-15- منبع­ها و منشأهای پساب کارخانه­های چرم سازی12

فصل چهارم : بخش تجربی

4-1- مواد شیمیایی مورد استفاده40

4-2- تهیه محلول­های مورد استفاده40

4-3- دستگاه های مورد استفاده41

4-4- طیف جذبی 42

4-5- نحوه انجام کار 43

4-6- بررسی پارامترها و بهینه کردن شرایط واکنش 44

4-7- بررسی اثر غلظت سولفوریک اسید 45

4-8- بررسی اثر غلظت متیلن بلو 48

4-9- بررسی اثر غلظت آسکوربیک اسید 51

4-10- شرایط بهینه 54

4-11- روش پیشنهادی برای اندازه گیری کروم 54

فصل پنجم: بحث و نتیجه­گیری

5-1- مقدمه 55

5-2 – بهینه نمودن شرایط 56

منابع ومآخذ 57

فهرست جداول

جدول (3-1). طبقه بندی عمومی روشهای سینتیکی26

جدول (4-1). مواد شیمیایی مورد استفاده40

جدول (4-2). تغییرات بر حسب غلظت های متفاوت H2SO446

جدول (4-3). تغییرات بر حسب غلظت های متفاوت MB48

جدول (4-4). تغییرات برحسب غلظت های متفاوت AA52

فهرست نمودارها

نمودار (4-1) تشخیص طول­موج ماکسیمم رنگ متیلن­بلو 42

نمودار (4-2) اثر تخریب رنگ متیلن بلو بدون حضور کروم (III44

نمودار (4-3). تغییرات بر حسب غلظت های متفاوت H2SO446

نمودار (4-4). تغییرات بر بر حسب غلظت های متفاوت MB48

نمودار (4-5). تغییرات در برحسب غلظت های متفاوت AA52

فهرست اشکال

شکل (2-1) اجزاء دستگاه­ها برای اندازه­گیری جذب تابش21

شکل (3-1) سرعت واکنش نسبت به زمان23

شکل (3-2) روش سرعت اولیه32

شکل (3-3) روش زمان ثابت34

شکل (3-4) روش زمان متغیر35

شکل (3-5) روش تانژانت 36