فایل بای | FileBuy

مرجع خرید و دانلود گزارش کار آموزی ، گزارشکار آزمایشگاه ، مقاله ، تحقیق ، پروژه و پایان نامه های کلیه رشته های دانشگاهی

فایل بای | FileBuy

مرجع خرید و دانلود گزارش کار آموزی ، گزارشکار آزمایشگاه ، مقاله ، تحقیق ، پروژه و پایان نامه های کلیه رشته های دانشگاهی

بررسی بر احتراق ذرات

مواد جامد بسیاری وجود دارند که قابلیت احتراق داشته و در صورتیکه شرایط محیطی صحبت اشتعال آن فراهم شود، شروع به سوختن می نمایند این شرایط که در نهایت منجر به ایجاد یک جرقه می گردد تا حدود زیادی به طبیعت و ابعاد ذره جامد بستگی دارد معمولاً قابلیت احتراق ذرات جامد با کاهش اندازه آنها به شدت افزایش می‌یابد به خصوص اگر ذرات جامد به شکل پودر و یا غبار در
دسته بندی فنی و مهندسی
فرمت فایل doc
حجم فایل 67 کیلو بایت
تعداد صفحات فایل 81
بررسی بر احتراق ذرات

فروشنده فایل

کد کاربری 8044

1-1- مقدمه ای بر احتراق ذرات ]1و2[

مواد جامد بسیاری وجود دارند که قابلیت احتراق داشته و در صورتیکه شرایط محیطی صحبت اشتعال آن فراهم شود، شروع به سوختن می نمایند. این شرایط که در نهایت منجر به ایجاد یک جرقه می گردد تا حدود زیادی به طبیعت و ابعاد ذره جامد بستگی دارد. معمولاً قابلیت احتراق ذرات جامد با کاهش اندازه آنها به شدت افزایش می‌یابد به خصوص اگر ذرات جامد به شکل پودر و یا غبار درآیند که در اینصورت شرایط جهت احتراق به مراتب مساعدتر می گردد و در این حالت نه تنها سریع‌تر محترق گشته بلکه سرعت سوزش آنها نیز افزایش می یابد. دلیل این امر به میزان اکسیژن نفوذ کرده به داخل توده ذرات بر می گردد. در واقع در حالت فوق الذکر هوا یا اکسیژن راحت تر به درون توده ذرات نفوذ کرده و افت حرارتی سطح سوزش کمتر می تواند به داخل جسم رخنه کند.

هنگامی که فاصله بین ذرات زیاد می شود، زمینه مناسب جهت سوختن سریع مهیا می گردد، چرا که هوای کافی جهت احتراق، بین ذرات قرار می گیرد. حال اگر این پتانسیل بالا که در احتراق ذرات ریز جامد وجود دارد خارج از کنترل به فعالیت در آید می تواند باعث خطرات فاجعه آمیز و آسیب دیدگی اقرار شود. چرا که نرخ سریع سوزش ذرات بر روی تغییرات فشار اثر گذاشته و باعث گستردگی شعله می گردد.

ذراتی که در اکثر صنایع وجود دارد، قابل احتراق می باشند. این ذرات ممکن است مستقیماً ترمیم گردند و یا در در اثر سایر تولیدات صنایع بوجود آیند بعنوان مثال می‌توان از ذره آرد، شکر، ذرت، پلاستیک ها و فلزات زغالسنگ و مواد دارویی که مستقیماً در صنایع تولید می شوند نام برد.

از جمله ذرایت که به صورت ناخواسته و در هنگام تولیدات صنعتی بوجود می‌آیند، براده های چوب، کرک و منسوجات و انواع دیگر براده ها می باشد. در هر صورت همگی این ذرات قابلیت احتراق داشته و در صورت فراهم شدن شرایط اشتعال و یا انفجار بسیار خطرناک می باشند. این انفجارها معمولاً زمانی رخ می دهد که ذرات در هوا پراکنده می گردند و منبع جهت ایجاد جرقه وجود داشته باشد، در حالیکه آتش سوزی ذرات در حالات توده ای، لایه ای و غیره می تواند رخ دهد. ذکر این نکته ضروری است که سرعت انتشار انفجار ناشی از ذرات به قدری زیاد است که می توان گفت اگر انفجار رخ دهد تلاش در جهت خنثی کردن اثرات زیانبار آن بیهوده است.

به طور کلی مجموع مباحث موجود در احتراق ذرات ریز جامد را می توان در دو بحث عمده «تکنولوژی مدرن احتراق» و «پیشگیری و ایمنی» خلاصه نمود. امروزه احتراق ذرات ریز جامد به لحاظ تکنولوژی مدرن احتراق در صنایع نظامی و صنایع هوا فضا کاربردهای متنوع و متعددی دارد که از آن جمله می توان به استفاده از ذرات فلزی در سوخت موشکهای جامد سوز به منظور افزایش پایداری احتراق و افزایش راندمان احتراق اشاره نمود. در واقع ارزش سوخت جامد که تولید انرژی فراوان مشخصه بارز آن بوده زمانی نایابتر می گردد که محدودیت حجمی و وزنی وجود داشته باشد.

از طرفی وجود غبار ذرات در صنایع باعث ایجاد مشکلات عدیده ای می گردد که پیشتر تشریح شد. مطالب ذکر شده مبین این مطلب بوده که جهت جلوگیری از انفجارهای ناخواسته غبار ذرات در صنایع و استفاده بهینه از ذرات فلزی در موشکها، نیاز به فعالیتهای تحقیقاتی مناسب می باشد. در این راستا شناخت مکانیزم انتشار شعله ذرات ریز جامد در ابری از ذرات، هدف مطالعاتی بسیاری از محققین در این زمینه می‌باشد. برای شناخت این مکانیزم عمدتاً پارامترهایی نظیر سرعت سوزش و فاصله خاموشی مورد بررسی و مطالعه قرار می گیرد.

ضمناً ذکر این نکته ضروری است که در مبحث اشتعال و ذرات تعریف واحدی در خصوص عبارت ذره وجود نداشته و در عمل عبارت ذره و پودر بدون هیچ فرقی استفاده می گردند. برای اهداف موجود در این پایان نامه هر دو عبارت قابل استفاده بوده ولی در بیشتر موارد از عبارت ذره استفاده گردیده است. البته این نامگذاری را می‌توان براساس قطر انجام داد. بر طبق استاندارد انگلیسی، ذرات با قطر کمتر از یک میکرون را دور یا غبار و ذرات بزرگتر از یک میکرون را ذره و ذرات با ماکزیمم ابعاد کمتر از هزار میکرون را پودر می نامند.

1-2- تاریخچه احتراق

بیش از صد سال قبل، انفجار در معادن زغال سنگ تنها بواسطه وجود ذرات، پذیرفته شده بود. هنگامی قضیه احتراق ذرات از اهمیت بیشتری برخوردار شد که در سده اخیر انفجاراتی در صنایع بیشمار دیگری که ما ذرات سر و کار داشتند به وقوع پیوست و خطرات انفجار ذرات و نیاز به توجهات کافی در مورد آنرا یادآور شد. انفجارات مهم به ثبت رسیده در ایالات متحده و کانادا از سال 1860 میلادی شامل معادن زغال سنگ نشانگر خرابیهای فراوان به بار آمده در کارخانه ها و بناها می‌باشد. در انگلستان آماری از تعداد انفجارها و تلفات ناشی از آن ارائه گردیده است. ولی تعداد میانگین انفجار ذرات در این کشور در سالهای اخیر 2 تا 3 مورد در ماه گزارش گردیده است.

1-3- مروری بر ادبیات احتراق

جهت شناخت و بررسی رفتار احتراقی ذرات ریز جامد لازم است مفاهیم اولیه و پارامترهای احتراقی ذرات جامد نظیر انواع شعله ها، دمای آدیاباتیک شعله، سرعت انتشار، سرعت سوزش، شعله آرام، شعله آشفته و… مورد مطالعه قرار گیرد. در این بخش به ذکر مفاهیم و تعاریف موارد فوق الذکر می پردازیم.

1-3-1- انواع شعله های اساسی ]3[

در فرایندهای احتراق، سوخت و اکسید کننده مخلوط شده و می سوزند. احتراق را بر اساس زمان مخلوط شدن سوخت و اکسید کننده به دو دسته پیش آمیخته[1] و غیر پیش آمیخته[2] تقسیم می کنند. به آن دسته از شعله هایی که در آن سوخت و اکسید کننده پیش از احتراق مخلوط می شوند شعله پیش آمیخته و به آن دسته از شعله هایی که در آن فرایند احتراق و مخلوط شدن سوخت و اکسیدایزر به صورت همزمان رخ می‌دهد شعله غیر پیش آمیخته گفته می شود. شکل (1-1) نمایی از یک شعله پیش آمیخته و شکل (1-2) یک شعله غیر پیش آمیخته را نشان می دهد.

1-3-2- دمای آریاباتیک شعله و شعله آریاباتیک

در یک فرایند احتراقی که به صورت آریاباتیک انجام شده باشد، درجه حرارت محصولات احتراق را دمای آریاباتیک شعله می نامند. در واقع دمای آریاباتیک شعله با فرض اینکه تغییری در انرژی جنبشی و پتانسیل رخ ندهد و کاری انجام نشود، حداکثر مقداری است که مواد اولیه پس از احتراق به آن می رسند. چون هیچ انتقال حرارتی انجام نمی گیرد و هیچ احتراق ناقصی باعث کاهش دمای محصولات نمی‌شود. البته واقعیت این است که تمام شعله ها حرارت خود را به محیط اطراف منتقل می کنند. ولی اغلب در بررسیهای تئوریک شعله، آن را آریاباتیک فرض می‌کنند. برای نزدیک شدن به طرح آریاباتیک شعله، می توان شعله را در یک لوله و یا چراغی که با محیط اطراف خود تبادل حرارتی کم و خیلی سریع داشته، در نظر گرفت.

در انتشار شعله در یک کانال باریک، از آنجا که قطر کانال کوچک تر از طول آزاد انتشار تشعشع در مخلوط ذرات ساکن می باشد، بنابراین تشعشع حاصل از پیشانی شعله و ناحیه محصولات احتراق در عبور از کانالها، به طور کامل بوسیله دیوارهای کانال جذب می شود.

1-3-3- احتراق ابر ذرات ]4[

احتراق ابر ذرات مدلی برای بررسی پارامترهای شعله و رفتار احتراقی ذرات ریز جامد می باشد. در این مدل از گسترش شعله در میان ابری از ذرات به عنوان بحث پایه جهت تحلیل پارامترهای احتراقی استفاده می گردد. ابر ذرات شامل مجموعه نسبتاً یکنواختی از ذرات می باشد که دارای قطر متوسط پایین هستند. در احتراق ابر ذرات که ایجاد ابر ذرات یکنواخت از جمله الزامات آن است، نوع سیستم پراکنش مهم می‌باشد.

همچنین اندازه قطر ذرات در احتراق ابر ذرات نقشی به سزا دارد. به طوریکه هرچه اندازه قطر ذرات کم شود، احتراق در ابر ذرات می تواند خیلی سریعتر انجام شده و حتی انفجارهای جدی و خطرناکی را بوجود آورد. به این ترتیب با توجه به مطالعات تجربی، ذرات با قطر کمتر از 100 میکرون می توانند خصوصیات ابر ذرات یکنواخت جهت احتراق ابر ذرات را داشته باشند.

بعلاوه ابر ذرات فلزی که نقطه جوش آنها بیشتر از دمای شعله می باشد جهت انجام مطالعات پایه مناسبترین می باشد. احتراق ابر ذرات فلزی به سبب خصوصیات بارز آن در تولید انرژی، مدتهاست که هدف مطالعات محققین در این زمینه می باشد. اشکال (1-3) و (1-4) تصاویری از احتراق ابر ذرات می باشد که توسط دوربین سرعت بالا در آزمایشگاه تحقیقاتی احتراق دانشکده مکانیک دانشگاه علم و صنعت ایران بدست آمده است.

1-3-4- احتراق تک ذره

احتراق تک ذره مدلی است که در آن یک ذره ریز جهت شناسایی رفتار احتراقی محترق می گردد. در واقع احتراق تک ذره یک نوع مطالعه در ابعاد میکروسکوپی می‌باشد. در این زمینه می توان به کارهای Edward L.Dreizin اشاره نمود. ولی با محترق نمودن یک ذره آلومینیوم در محفظه ای خاص، ویژگیهای احتراق آلومینیوم نظیر نوارهای روشنایی، تغییرات سرعت ذرات سرزنده، زمان احتراق، تاثیر اکسیدایزر بر احتراق، انفجارهای کوچک در پایان احتراق، احتراق غیر متقارن و... را مورد بررسی قرار داده است ]5و6[. شکل (1-5) احتراق یک تک ذره را نشان می دهد. در خصوص احتراق تک ذره در بخش بعد به طور مفصل بحث خواهد شد.

1-3-5- شعله آرام

شعله آرام عبارتست از یک لایه نازک و بدون اعوجاج و صاف که در ناحیه مخلوط سوخته نشده و محصولات احتراق را از یکدیگر جدا می کند. برای ایجاد یک شعله آرام، یکی از مشکلات حضور نیروی جاذبه است. در محیطهای غیر همگن، مانند مخلوط ذرات ریز جامد و هوا، ذرات تحت تاثیر نیروی جاذبه به مرور ته نشین می‌شوند و همین امر باعث افزایش غلظت سوخت و پیرو آن ایجاد شعله آشفته می‌گردد. با توجه به اهمیت نیروی جاذبه در بروز مشکلات آزمایشگاهی، روشها و مکانیزمهای متفاوتی برای توزیع ذرات پیشنهاد شده است که هر کدام به نوعی سعی در حذف و یا کاهش اثر جاذبه در جریان آزمایشات دارند که از آن جمله می توان به روش جاذبه ضعیف[3]]7[، روش جاذبه صفر]8[، تعمیق ذرات به روش الکتروستاتیکی[4]]9[، تعمیق استاتیکی به روش الکتروستاتیکی[5]]9[، روش تعمیق ناگهانی[6]]10[ و روش بستر سیالی شده[7]]11[ اشاره نمود.

در ناحیه‌ای که شعله آرام تشکیل می شود، شعله با سرعت ثابت منتشر می‌گردد. پیشانی شعله آرام، بدون اعوجاج و تقریباً تخت و یا سهمی شکل می باشد. شکل
(1-6) تصویری از شعله آرام ابر ذرات آلومینیوم را در مخلوطی از اکسیژن- نیتروژن نشان می دهد.

1-3-6- شعله آشفته

از مشخصه های کلی احتراق ابر ذرات، وجود اغتشاش قابل ملاحظه در مخلوط نسوخته قبل از عبور شعله می باشد. در این حالت در صورتیکه غلظت ذرات جهت ایجاد شعله آشفته مناسب باشد، شعله آشفته تشکیل می گردد. در یک شعله آشفته، شعله به یک ناحیه واکنش توزیع شده تبدیل نمی شود. بلکه به نواحی واکنش متنوع تقسیم می گردد ]12[. در ناحیه ای که شعله آشفته تشکیل می گردد، سرعت شعله با شتاب زیادی افزایش می یابد. پیشانی شعله آشفته دارای اعوجاجهای نامنظم و اشکال مختلف می باشد که از آن جمله می توان به چین خوردگیهای نامنظم، وجود ورتکسها در پیشانی و ... اشاره نمود. شکل (1-7) تصویری از یک شعله آشفته را نشان می‌دهد.

1-3-7- سرعت انتشار شعله

در محیط ذرات ریز جامد با ایجاد جرقه مناسب، شعله ای ایجاد گردیده و در صورتی که بستر سیال محتوی ذرات جهت انتشار شعله مناسب باشد، شعله با سرعت خاصی که بستگی به غلظت ذرات و نوع گاز ترکیبی با ذرات دارد، شروع به حرکت می‌نماید. سرعت انتشار شعله یکی از پارامترهای دینامیکی مهم در شعله بوده و کمک بسزایی در جهت شناخت آن می نماید.

سرعت شعله تابعی از غلظت ذرات ریز جامد می باشد و با تغییر غلظت ذرات سرعت انتشار شعله در محیط ذرات ریز جامد تغییر می نماید. جهت اندازه گیری سرعت شعله می توان از روشهای تصویر برداری و یا سنسورهای مناسب استفاده کرد. شکل (1-8) نشان دهنده تغییرات سریعت شعله به صورت تابعی از غلظت ذرات می‌باشد.

1-3-8- سرعت سوزش[8]

سرعت سوزش نرخ تبدیل ناحیه سوخته نشده به ناحیه سوخته شده می باشد. سرعت سوزش ذرات یکی از مهمترین کمیتهای مورد نظر ما بوده که اندازه گیری آن به طور مستقیم امکان پذیر نمی باشد. برای بدست آوردن سرعت سوزش باید ابتدا مقدار سرعت انتشار شعله را بدست آورد و سپس بر نسبت سطح شعله به سطح مقطع لوله آزمایش احتراق ذرات که برای تمام غلظتها تقریباً برابر 5/1 الی 2 می باشد تقسیم نمود. شکل (1-9) نشان دهنده سرعت سوزش برحسب غلظت ذرات می باشد.

1-3-9- ضخامت شعله[9]

ضخامت شعله که با نماد نشان داده می شود، عبارت از یک لایه بسیار نازک بوده که دو ناحیه سوخته نشده و سوخته شده را از هم جدا می نماید. اندازه گیری ضخامت شعله ذرات ریز جامد به دلیل پیچیدگیهایی که دارد و بدلیل تاثیر غلظت ذرات بر آن کار بسیار مشکلی می باشد. به این ترتیب که برابر قرار دادن نرخ حرارت تولید شده در شعله با نرخ حرارت تلف شده از ناحیه شعله در جدار لوله، ضخامت شعله برحسب فاصله خاموشی بدست می آید.

1-3-10- فاصله خاموشی شعله[10]

فاصله ایست که شعله در بین صفحاتی که در مسیر حرکتش قرار می گیرد خاموش می‌گردد. این فاصله معمولاً بین 7-3 میلی متر می باشد. فاصله خاموشی که با نماد dq نشان داده می شود، یکی از بنیادی ترین پارامترهای دینامیکی شعله می باشد.

1-3-11- خاموشی شعله[11]]13[

مسئله اصلی در خاموشی شعله تعیین حداکثر اندازه گذرگاههایی از قبیل قطر لوله، اندازه مجرا یا فاصله بین صفحاتی است که شعله از میان آنها نتواند عبور کند. اگر شعله بخواهد منتشر شود، آزاد شدن انرژی در اثر واکنش شیمیایی باید بتواند درجه حرارت ناحیه واکنش را به اندازه کافی بالا ببرد تا واکنش سریع، تقویت گردد. اگر انتقال حرارت به سطوح اطراف به اندازه کافی زیاد باشد، دما افت پیدا خواهد کرد و واکنش کند می گردد. همانطور که واکنش کند می گردد، نرخ آزاد شدن انرژی پایین آمده و درجه حرارت به زیر دمای اشتعال نزول پیدا خواهد کرد و شعله خاموش می‌شود. همین پدیده نیز در محفظه‌های احتراق در جاییکه دمای لایه مرزی نزدیک سطوح فلزی، به پایین تر از دمای اشتعال می رسد مشاهده می شود.

برای یک مخلوط مشخص، چندین اندازه لوله (d0) وجود دارد که شعله دیگر نمی‌تواند منتشر گردد؛ اندازه لوله تا جاییکه هیچ شعله ای در آن نتواند منتشر شود، کم می گردد. ممکن است لوله با صفحات موازی (شکافهای مستطیلی) یا با یک شکل مخروطی جایگزین گردد. در حالت مخروطی شکل، شعله در طرف بزرگ مخروط شروع شده و در موقعیتی که شعله خاموش می گردد، قطر خاموشی تعیین می‌گردد.

فاصله خاموشی d0 به شکل دیواره ها، نوع سوخت، استوکیومتری، فشار، درجه حرارت شرکت کننده ها و آشفتگی بستگی دارد. نمودارهای فاصله خاموشی در برابر نسبت تعادلی به صورت یک سهمی با یک مینیمم در قسمت غلیظ نسبت استوکیومتریک می باشند. در طرف رقیق، فاصله خاموشی با عکس سرعت سوزش متناسب می باشد. با افزایش وزن مولکولی سوخت در قسمت غلیظ، فاصله خاموشی به طور جزئی کاهش می یابد. برای مخلوط پروپان- هوا شکلهای (1-10) و (1-11) داده های فاصله خاموشی موازی را نشان می دهند. فاصله خاموشی تقریباً با عکس فشار متناسب می باشد. برای نسبت استوکیومتریک پروپان- هوا، d0­ با p-0.88 متناسب بوده ولی برای هیدروژن هوا d0 با p-1.14 متناسب می باشد. بعنوان یک تقریب اگر سرعت سوزش با توان S فشار متناسب باشد آنگاه برای فشارهای پایین، d0 با p (1+S) متناسب خواهد شد. اثر درجه حرارت شرکت کننده T0 روی فاصله خاموشی توسط این فرمول تقریبی d0V1/T0=cte بدست می آید.

اثر آشفتگی کمتر محسوس بوده اما با افزایش آشفتگی، انتقال حرارت افزایش یافته، بنابراین فاصله خاموشی نیز افزایش خواهد یافت. اثرات هیدرودینامیکی دیگر از قبیل شناوری روی فاصله خاموشی نیز مشهود است. برای شعله های رقیق در لوله ها، فاصله خاموشی در پایین دست نسبت به بالا دست جریان، 10 درصد بیشتر است. برای شعله های غلیظ ممکن است ناپایداری اتفاق بیفتد و پدیده خاموشی خیلی پیچیده‌تر می شود.

کلاً اثرات دیواره به علت انتقال حرارت بوده نه در اثر نفوذ اجزاء که به نظر نمی‌رسد روکش دار کردن دیواره ها بر روی خاموشی اثر جزئی داشته باشد.

1-3-12- حداقل انرژی جرقه

منظور از حداقل انرژی جرقه که با نماد E min نشان داده می شود، مقدار انرژیی است که باید توسط منبع جرقه به کار گرفته شود تا احتراق شروع شود. بنابراین در انرژی بیشتر نیز می توان جرقه و در نتیجه احتراق داشت ولی نکته حائز اهمیت در حداقل انرژی جرقه، بحث بهینه سازی است.

1-3-13- حدود اشتعال

منظور از حدود اشتعال این است که بدانیم حد ایجاد اشتعال کجا بوده و در چه ناحیه‌ای از غلظت، شعله نداریم. علاوه بر این از شعله اضافی یعنی بالاتر از حد اشتعال جلوگیری کرده، چرا که اگر مثلاً کارخانه ای در فضای پایین تر از حد اشتعال باشد ایمن می باشد. شکل (1-12) حدود اشتعال را در احتراق ذرات آ‌لومینیوم در مخلوطی از اکسیژن- نیتروژن نشان می دهد.


فصل دوم

بررسی رفتار احتراقی ذرات ریز فلزی

2-1- مقایسه انتشار شعله در ابر ذرات بور، آلومینیوم، منیزیم، زیرکونیم و آهن [ ]

کاری که توسط آقایان Shevchuk، Boychuk، Goroshin و Kostyshin در دانشگاه ایالتی ارسا انجام شده، در زمینه انتشار شعله در ابر ذرات فلزی مختلف با اندازه‌های مشابه می باشد. ذیلاً شرحی از کار ایشان و نتایج بدست آمده مورد بررسی قرار خواهد گرفت. در این آزمایشات دو مسئله حائز اهمیت می باشد؛ اول بررسی شرایط لازم جهت انتشار شعله در ابر ذرات بود و مسئله دوم مقایسه سرعت شعله بین فلزات مختلف در شرایط یکسان.

این مقایسات باید بر مبنای سرعت سوزش انجام شود چرا که ابر ذرات مختلف نه تنها ممکن است در میزان سرعت انتشار متفاوت باشند بلکه در شکل سطحی نیز تفاوت داشته باشند. لذا در این کار اثر غلظت بر سرعت سوزش در مخلوطهایی از هوا و Mg، Al، Zr، Fe و B مورد بررسی قرار گرفته است. آزمایشات در لوله های شیشه‌ای ی عمودی با قطر m035/0 و طول m1 انجام شده است به طوریکه سوخت از پایین لوله که محصور شده است به سمت بالا حرکت می کند و در بالای لوله که باز می باشد مشتعل می گردد. جرقه اولیه جهت ایجاد اشتعال توسط یک جرقه زن الکتریکی با توان 27 وات ایجاد می گردد.

در مخلوطهایی از Mg، Al، Zr و هوا ویژگیهای فرایند احتراق بسیار پیچیده و ناپایدار می باشد. یک Photoregistrogram از حرکت شعله در مخلوط آلومینیوم- هوا در شکل (1) به همراه بخشهایی از سطح شعله در مقاطع متناظر نشان داده شده است. شکل (1) در مقاطع گذار از یک حالت به حالت دیگر مورد بررسی قرار گرفته است:

در ابتدا یک شعله آرام که شکل سطح آن شبیه یک منحنی سهمی می باشد به طور مستقیم در داخل مخلوط سوخته پیش می رود (بخش a-b در شکل (1))، سپس یک شعله مرتعش با شکل ثابت (نوع اول) و با فرکانس ارتعاش (b-c)، در ادامه یک شعله مرتعش با شکل موج دار روی سطح (نوع دوم، c-b) و در نهایت یک شعله آشفته با ویژگیهای توسعه یافته (d-e).

شکل (2) وابستگی سرعت سوزش vf به غلظت سوخت، c، را نشان می دهد.

در سوزش کند مخلوط هوا و ذرات آهن، تنها رژیمهای آرام و مرتعش نوع اول وجود دارد. در مخلوطهای هوا- بور ، آغاز فرآیند انتشار با موفقیت همراه نشد چون ذرات بور سوخته شده در شعله جرقه زن به سمت بالای لوله خارج می‌شوند.

در همه مخلوطهای Ze,Al,Mg با اکسیژن که در آن بیشتر از 4/0 می باشد یک رژیم نوسانی شدید احتراقی و بلافاصله به دنبال آن گذار به رژیم آشفته دیده می‌شود. در مخلوطهای اکسیژن- بور که در آن 7/0 یا 4/0= می باشد، انتشار پایدار شعله محقق نشد. تنها تکه های جداگانه ای از شعله سعی در انتشار داشتند که خاموش شدند. اما در 7/0> فرآیند احتراق دارای ویژگیهای یک شعله آرام (Laminor) بوده که در آن شعله دارای سرعت انتشار ثابت و پیشانی تقریباً تخت همانند شکل (3) می باشد. تنها بی ثباتی مشهود در فرایند انتشار شعله در مخلوط B+O2 بی ثباتی در جابجایی شعله است که به صورت تغییرات متناوب در انحراف سطح شعله به سمت دیواره های لوله ظاهر می گردد. مورد مشابه این اثر در مخلوطهای هوا و آهن نیز دیده می شود.

همچنین ورتکسهایی در ناحیه محصولات احتراق بوجود می آید. در واقع شرط لازم جهت تشکیل ورتکسها در ناحیه محصولات احتراق در نزدیکی ناحیه احتراق،
04/0Fr< می باشد (، که در آن g شتاب جاذبه و D قطر لوله می باشد) (Abrukov, Samonov, 1958). بور و آهن صادق است و برای دیگر سوختها صادق نمی باشد. بیشترین تلفات احتمالی در لوله هایی که محدوده انتشار شعله در آن کم می‌باشد مربوط به میزان جابجایی شعله در مخلوطهای بور است. به همین علت، در همه موارد، انتشار شعله در مخلوطهای بور توسط صفحات خاموشی تقریباً در اواسط لوله خاتمه می یابد. مورد مشابه این موضوع در مخلوطهای هوا و آهن نیز وجود دارد.

در مخلوطهای منیزیم، آلومینیوم، روی و آهن (برای آهن در غلظتهای کم)، سرعت سوزش شعله آرام با افزایش غلظت سوخت به اندازه افزایش می یابد. در مخلوطهای B+O2 سرعت سوزش در محدوده غلظت مورد نظر، به غلظت بستگی نداشته و در حدود cm/sec8 می باشد. این نتیجه غیر منتظره‌ای است و در حال حاضر هیچ پیش زمینه تئوریکه وجود ندارد.

ضمناً توجه کنید که در ابر ذرات مخلوط B+O2 با حجم 5 لیتر، سرعت سوزش در غلظت سوخت g/m3350 برابر cm/s10 بدست آمد. با تعویض بخشی از اکسیژن مخلوط با هیچ سرعت سوزش افزایش یافت به طوریکه در مخلوط
He%40+ O2%60+B سرعت سوزش در غلظت یاد شده cm/s6/13 بدست آمد.

بعنوان نتیجه بحث می توان مکان زیر را بیان نمود.

1- شعله آرام ساکن در مخلوطهای بور حاوی اکسیژن زیاد (7/0>) می تواند شکل بگیرد که علت آن مقدار کم سرعت سوزش و تاثیر جابجایی طبیعی می باشد (انتشار شعله در لوله ها در راستای بردار ).

2- در مخلوطهای اکسیژن- بور، سرعت سوزش اساساً به میزان غلظت سوخت بستگی ندارد، که این قضیه احتمالاً دلیلی بر ضعیف بودن مکانیزم فعال سازی اشتعال بور می باشد.

3- براساس مقادیر بدست آمده، سوختهای آزامایش شده به لحاظ مرتبه فعال سازی (activity) می توانند به ترتیب زیر قرار گیرند: Mg، Zr، Al، Fe و B. همین ترتیب در ارتباط با پایداری رژیم سوزش لامینار وجود دارد.

2-2- شعله‌های آرام پیش‌آمیخته در ابر ذرات بور] [

در این بخش کار آقایان Goroshin ، Ageyev، Shoshin، Shevchuk، که در بخش فیزیک دانشگاه ایالتی ؟ انجام شده مورد توجه قرار گرفته است. آنها با آزمایشات متعدد اثر علظت چرمی بود و نوع ترکیب مخلوط گاز را بر سرعت سوزش مورد بررسی قرار دارند. ذیلاَ به بررسی و تشریح کار ایشان می‌پردازیم.

برای تحقیق در خصوص احتراق ابر ذرات بور از شعبه پدیدار ؟ پیش‌آمیخته نوع جنس (‌Bunsen ) استفاده شده است. شکل (‌4) شماتیکی از دستگاه آزمایش را نشان می‌دهد.

شکل (‌4- الف ) ترکیبی از یک پیستون تغذیه کننده و یک شکاف برای پخش ذرات را نشان می‌دهد. ذرات قبلاَ توسط یک نوسانگر[12] در سیلندر تغذیه کننده فشرده شده‌اند. حرکت خطی پیستون در محدوده سرعت تنظیم شده است. میزان حجم گاز در شیار دایروی ( انواع شیار 30 میکرون می‌باشد) ثابت و برابربا می‌باشد. تنظیم جریان ذرات در طول یک نازل مخروطی که توسط آب خنک می‌شود با استفاده از یک egector انجام می‌شود. زمانیکه نیاز باشد. جریان ذرات با کمک یک گزمکن الکتریکی حلقوی پیش‌گرم می‌شود جهت پیدا نگه‌داشتن شعله غبار ذرات بود از نوع جنس از یک نگهدارنده شعله پروپان - ؟ استفاده شده است( به شکل 4 توجه کنید). تمام جریان مخلوط پروپان، اکسیژن از 10 % جریان ذرات که از سال خارج می‌شود تجاوز نمی‌کند. جدیدترین آزمایشات شعله غبار ذرات بر این نکته تأکید دارند که استفاده از نگهدارنده شعله[13] در عمل هیچ تأثیری بر سرعت شعله ندارد. میزان غلظت غبار ذرات با جمع‌آوری تمام ذرات خارج شده از فیلتر در مدت 5 تا 10 ثانیه و توزین آنها اندازه‌گیری می‌شود.

سرعت سوزش با تقسیم میزان جریان خارج شده از نازل بر سطح مخروطی شعله داخلی محاسبه می‌شود از خصوصیات شعله ذرات بور و روشنایی بیش از حد آن می‌باشد. به همین علت عکسبرداری با فیلتر انجام شده است. درجه خلوص غبار ذرات بور در این آزمایشات 97 % می‌باشد. شکل ذرات بور بی‌قاعده و با نظم و عموم ذرات دارای دو نظر متفاوت می باشند قطر میانگین ذرات می‌باشد توزیع قطر ذرات را در شکل ( 5 ) ببینید.

در این مقاله گزارش شده است که زمانی که سرعت شعله بینهایت محکم است، مثلاَ در سوسپانسیونهای غبار ذرات بور اکیژن خالص موفق به پایدار نمودن شعله بنفش شده‌اند. حتی زمانیکه توان پایدار کننده دو برابر شد. در این حالت با انتشار شعله در یک لوله عمودی سرعت شعله بدست آمده است.

نتایج تجربی اثر غلظت جرمی بور بر سرعت سوزش در مخلوطهای گازی با ترکیبات مختلف در شکل (6) ارائه شده است حد بالایی غلظت سوخت در آزمایشات را ویژگیهای سیستم ایجاد جریان ذرات تعیین می‌کند.

همچنین حد پایین غلظت سوخت ( تقریباَ با عدم امکان ایجاد شعبه پایدار تعیین می‌گردد.

در این شکل واضح است که تغییر غلظت سوخت عملاَ تأثیری در سرعت سوزش ندارد.

شکل (‌7) اثر ترکیب مخلوط گاز هلیم / اکسیژن بر سرعت سوزش شعله را نشان می‌دهد. این شکل بیانگر این مطلب است که اثر ترکیب مخلوط گاز هلیم / اکسیژن بر سرعت سوزش بسیار قوی می‌باشد. که بیشترین مقدار آن مربوط به مخلوط گاز می‌باشد. زمانیکه غلظت اکسیژن کمتر از 24 % باشد، شعله بور در مشعل پدیدار نمی‌شود. در لوله نیز منتشر نمی‌گردد.


نظرات 0 + ارسال نظر
امکان ثبت نظر جدید برای این مطلب وجود ندارد.