دسته بندی | معماری |
فرمت فایل | doc |
حجم فایل | 17 کیلو بایت |
تعداد صفحات فایل | 27 |
تعریف:
ساختمان بتون فولادی ساختمانی است از بتن و فولاد که در مناطق کشش آن فولاد قرار داده شده باشد و در نتیجه «کشش را فولاد و فشار را بتون تحمل کند. قسمتهای عمده این اسکلتهای بتن آرمه عبارت است از دال (تاوه ـ سقف ـ کف) پوتر (تیر) قوس و قاپ ستون ـ شالوده ـ دیوارهای حایل و ضامن بتون آرمهای.
مزایای ساختمانهای بتنی:
1- در ساختمانهای بتون آرمه شکل پذیری بهتر انجام میشود.
2- مقاومت سازههای بتنی با گذشت زمان افزایش پیدا میکند.
3- ساختمانهای بتون آرمه اگر صحیح اجرا شوند به مراتب مقرون به صرفهترند.
4- پیوند به راحتی صورت میگیرد.
5- در مقابل رطوبت و حرارت مقاومت بهتری نشان میدهد.
6- مقاومت در مقابل آتشسوزی در سازههای بتنی خیلی بیشتر است و از اهمیت فراوان برخوردار میباشد.
7- ساختمانهای بتنی در مقابل نشست و زمین لرزه مقاومت بیشتری دارند.
8- از لحاظ بهداشتی بهترین نوع ساختمان است.
9- ساختمانهای بتنی از یک سو زیبائی ساختمانهای سنگی را دارد و از سوی دیگر امتیاز و مقاوم ساختمانهای آهنی برخوردار است.
معایب ساختمانهای بتنی:
احتیاج به نیروی متخصص در قالببندی و بتن سازی دارد همان طور که تاکنون بر اهمیت ساختن بتن تاکید شده در صورتی که نسبتهای اختلاط حفظ نشوند و از بتن مراقبتهای لازم به عمل نیاید فاجعه آفرین است. اگر عمل قالببندی بطور فنی و اصولی انجام نشود ممکن است در نتیجه فشار بتن تازه قالب در برود چون بتن پس از مدت کوتاهی خودش را میگیرد سبب ایجاد دشواریهائی اجرائی و خسارت مالی گردد.
2- انتقال گرما و سرما توسط ساختمانهای بتونی به داخل ساختمان به راحتی انجام میگیرد که این یک ضعف میباشد.
3- مدت اجراء: اجراء ساختمان بتنی هر کدام برای کسب مقاومت مناسب جهت تحمل بار احتیاج به مدت زمانی حدود 14 تا 28 روز دارد مثلاً یک ستون بتنی قبل از روی آن بارگذاری شود باید مقاومت کافی بدست آورد تا قادر باشد براحتی نیروهای وارده را به فنداسیون منتقل نماید.
4- نیاز به ماشین آلات بتون ساز و حمل بتون و وسایل دیگر مانند (ویبره …) دارد.
5- اگر عضوی از ساختمان بتونی خراب شود امکان تعویض و ترمیم مشکل است.
6- عدم تقویت و امکان گسترش ساختمان پس از ساخته شدن.
7- شرایط آب و هوائی مانند سردی و گرمی هوا در اجرای آن تأثیر میگذارد.
8- انتقال ارتعاش: این نقیضه بستگی به یکپارچگی بتون دارد متاسفانه به زحمت میتوان آن را بر طرف کرد.
9- ضعف در برابر انفجار: 10 وزن ساختمانهای بتونی در جابه مراتب بیشتر از وزن ساختمانهای فولادی میباشد.
لازم به یادآوری است با بیش ساخته کردن ساختمانهای بتونی میتوان از بیشتر معایب ساختمانهای بتونی کاست.
اجرای ساختمانهای بتونی
اجرای ساختمانهای بتونی از پس سازی شروع شد و به سقف سازی ختم میگردد که مراحل اجرائی آن به صورت خلاصه به این صورت است، که ابتدا پی کنی انجام میگیرد آن گاه پس سازی و سپس اجرا بر ستونها انجام میشود. اگر ساختمانی به صورت تیر و دال یکسره باشد این مرحله همه یکجا اجرا میشود ـ اگر به صورت تیر و تیرچه باشد ابتدا تیر اجرا میشود سپس تیرچه ریزی انجام میگیرد در قمست بعد چارتهای اجرائی هر مرحله آمده است.
(1) مراحل اجرائی پی
1- مطالعه نقشه پی کنی 2- تسطیح زمین 3- پاشیدن گچ 4- اجرای کود برداری و کنترل ابعاد پی طبق نقشه 5- آماده نمودن امکانات بتن ریزی و قالب بندی و آرماتورگذاری 6- اجرای بتون مسگر 7- قالببندی 8- کنترل ابعاد پس و بررسی استحکام قالبها 9- بتون ریزی … 10- برداشت قالب پس از زمان معین.
(2) مراحل اجرای ستون
1- بررسی و مطالعه ستون از روی نقشه و پس از بررسی محل اجرای آن 2- آماده نمودن امکانات بتن ریزی ـ قالببندی ـ آرماتورگذاری 3- نصب قالب و شاقولی نمودن آن و مهار کردن کامل آن 4- آماتور گذاری و کنترل آن بر طبق نقشه اجرایی شامل کنترل طولی پوشش یا (آنکوراژ) قالبها ـ خاموتها 5- بتن ریزی 6-برداشت قالب پر از زمان معین.
(3) مراحل اجرای تیر
1- بررسی و مطالعه تیر از روی نقشه و بررسی محل اجرای آن 2- آماده نمودن امکانات بتنریزی ـ قالببندی ـ آرماتور گذاری 3- روغن زدن تخته قالبها 4- نصب قالب تیر و مهار آن توسط حائلهای محکم 5- آرماتور گذاری و خرک گذاری و کنتزرل آن طبق نقشه اجرائی 6- کنترل ابعاد نهایی و علامت گذاری ارتفاع تیر 7- بتن ریزی و مراقبت 8- برداشت قالب پس از زمان معین.
قبل از بتنریزی باید کلیه وسایل مخلوط کردن و حمل بتن تمیز شود. قالبها و محلهایی که بتن در آنها ریخته میشود باید از مواد زاید پاک شود. قالبها باید کاملاً مرطوب یا روغن مالی شده باشد.
محل جایگذاری آرماتور، لوله، میله مهار، و سایر قطعاتی که در داخل بتن قرار میگیرد همچنین سوراخها و فضاهای خالی که لازم است در داخل بتن تعبیه شود باید قبلاً به رویت و تصویب مهندس ناظر برسد. موادی که برای سوراخها و فضاهای خالی در بتن قرار داده میشود باید با موادی آغشته شود که خارج کردن آنها را آسان میکند. سطوحی که با بتن در تماس است و قابلیت جذب آب دارد باید کاملاً مرطوب شود.
چنانچه در محلی که باید بتن ریخته شود آب وجود داشته باشد باید قبلاً آب آن را خارج کرد. این کار ممکن است با کمک پمپ یا هوای فشرده یا بصورت دیگری که دستگاه نظارت مجاز بشناسد. انجام گیرد قبل از بتن ریزی روی بتن قبلی، شیره خشک شده، مواد زاید و دانههای لق باید از سطح بتن پاک شود.
بتن باید با بتنوتیزه ساخته شود زمان اختلاط نباید از 5/1 دقیقه کمتر باشد اختلاط با دست فقط با اجازه دستگاه نظارت در موارد استثنایی و کم اهمیت مجازات و در این صورت لازم است نکات زیر رعایت شود.
بزرگترین دانههای سنگی
الف) یک پنجم کوچکترین لبه داخلی قالب
ب) یک سوم ضخامت دال
ج)سه چهارم حداقل فاصله آزاد بین میله گردها
تبصره: به کاربردن سنگدانههای درشتتر از 32 میلیمتر در مساحت قطعات بتون آرمه توصیه نمیگردد.
ولی در هر صورت اندازه سنگدانهها نباید از 62 ملیمتر تجاوز کند سنگدانه نباید از خود واکنش قلیائی نشان دهد.
الفـ ده درصد برمقدار سیمان مندرج در نقشهها اضافه شود.
بـ مواد تشکیل دهنده بتن قبل از اضافه نمودن آب، روی سطح صاف و تمیز سه بار بخوبی با هم مخلوط شود.
پـ ضمن اضافه نمودن آب لازم مخلوط حداقل سه بار بخوبی زیر و رو میشود.
تـ بتن به دست آمده باید ظرف نیم ساعت مصرف شود.
در صورتی که بتن ساخته شده با ماشین به محل مصرف حمل میشود باید حمل در اسرع وقت صورت گرفته و روشی به کار رود که از آغشته شدن آن به مواد زاید یا جدا شدن اجرای بتن از یکدیگر. جلوگیری به عمل آید در هر حال زمان حمل نباید از سی دقیقه تجاوز کند. بتن باید قبل از شروع به سفت شدن، در محل مورد مصرف ریخته شده و از به هم خوردن و جابهجا شدن بعدی آن جلوگیری شود.
در مورد بتن آرمه، تراکن باید با نهایت دقت صورت گیرد تا حفرهها هوا کاملاً از بین برود بطوری که ارتفاع ریختن بتن نباید حداکثر از 2 متر بیشتر باشد استفاده از پمپ برای انتقال بتن فقط در صورت موافقت دستگاه نظارت مجاز است. انتقال بتن حاوی مصالح سنگی بزرگتر از 75 میلیمتر با استفاده از پمپم مجاز نیست. برای تراکم بتن آرمه باید از ویپراتور استفاده نمود. ویپراتور باید به فواصل 50 سانتیمتر داخل بتن شده و از تماس آن با آرماتور و قالببندی جلوگیری به عمل آید. داخل و خارج کردن ویپراتور باید در حین ویپره کردن بارامی صورت گیرد. ویپراتور باید بین 5 تا 15 ثانیه در بتن باقی بماند و قبل از شاهر شدن دو غاب سیمان از بتن خارج گردد. در بتن ریزی عمودی نظیر ستونها، تقویت قالببندی برای تحمل اضافه فشار ویپراتور ضروری میباشد.
در صورتی که با اجازه دستگاه نظارت، بکار بردن ویپراتور ضروری نباشد برای ؟؟ تراکم لازم باید از تخماق دستی و کوبیدن با دست استفاده شود) ویپراتورهای استوانهای باید تا حد امکان در وضع قائم نگاه داشته شده و در امتداد محور جابهجا شود. استفاده از میزهای لرزان فقط برای بتنهای دارای ضخامت حداکثر 20 سانتیمتر مجاز است لرزاندن بیش از اندازه بتن خصوصاً در مواردی که بتن روان باشد مجاز نیست.
بتن ریزی باید تا کامل شدن قطعه مورد نظر و تا رسیدن محل مجاز توقف بتن ریزی، بطور مداوم ادامه یابد. از متوقف نمودن بتن ریزی باید تا حد امکان پرهیز شود. عمل قطع بتن ریزی باید در نقاط حداقل لنگر خمش و نیز حداقل برشی صورت گیرد. بتن کلیه پر دهانه یک دال و تیرهای مربوط به آن در یک نوبت ریخته شود. سطح مقطع بتن در محل قطع بتن ریزی باید تا حد امکان عمود بر سطح بتنریزی باشد. در موقع شورع مجدد سطح اتصال باید با برس سیمی تمیز شده و سپس خیس گردد و با دوغاب سیمان آغشته شود. ضخامت لایههای مختلف.
بتن در هنگام بتنریزی
ضخامت لایههای مختلف بتن برای بتن مسطح نباید از 35 سانتیمتر و برای بتن با حجمهای زیاد نباید از 45 سانتیمتر بیشتر شود. قطعات و پستهای غیر فلزی که برای تثبیت آرماتورها موارد استفاده قرار گرفته است باید هنگامی برداشته شود که دیگر بوجود آنها نیازی نیست. کلیه کارهای بتنی دارای ایراد باید تخریب و تجدید یا بنحوی که مورد قبول دستگاه نظارت باشد. ترمیم شود تخلخل زیاد در سطح بتن ریخته شده را غیر قابل قبول میکند ولی تخلخل جزئی سطح بتن باید با ملات ماسه پر و صاف شود. در کلیه موارد ذکر شده تشخیص دستگاه نظارت ملاک عمل خواهد.
شرایط بتنریزی:
بتنریزی در هوای سرد تهیه و ریختن بتن نباید در حرارت کمتر از 2 درجه سانتیگراد صورت گیرد. در هوای سرد (نزدیک به یخبندان) برای تسریح در سفت شدن بتن باید از سیمانهای زود بند استفاده شود و یا کلرورکلیسیم به نسبت حداکثر 2 درصد به سسیمان پرتلند معمولی اضافه شود. مصالح یخ زده به هیچ وجه نباید مصرف شود بتنی که به علت یخ زدگی ضایع شده باشد باید تخریب شده و به جای آن مخلوط تازه ریخته شود. در صورتی که بتنریزی در هوای غیر مساعد اجباری باشد (از صفر تا منهای پنج سانتیگراد) باید پیشبینیهای احتیاطی به شرح زیر به عمل آید.
الف: گرم کردن دانههای سنگی و گرم کردن آب تا 60 درجه سانتیگراد قبل از ساخت ( هنگام ساخت نباید این حرارت از 38 درجه بیشتر باشد)
ب: مصرف 250 تا 400 کیلوگرم سیمان در مترمکعب بتن
پ: پرهیز از حمل به مدت طولانی
ت: حفاظت سطوح برهنه بتن بلافاصله پس از ختم بتنریزی برای اینکه اطمینان حاصل شود که درجه حرارت بتن تا سخت شدن بتن بالاتر از 2 درجه باقی خواهد ماند برای اختلاط بتن میتوان از کلرورکلسیم یا مواد مشابه دیگر استفاده کرد
مصرف گلرورکلسیم نباید بیش از 2 درصد وزن سیمان باشد.
بطور کلی بتنریزی در حرارتهای پائین به توازنهای 5 درجه سانتیگراد باید در شرایط خاص دیگری صورت گیرد.
بتنریزی در هوای گرم ـ در صورتی که درجه حرارت در سایه از 43 درجه سانتیگراد تجاوز کند. بتنریزی نباید انجام گیرد هنگامی که درجه حرارت از 32 درجه بیشتر باشد: باید اقدامت احتیاطی زیر صورت گیرد.
الف: متوقف کردن بتنریزی در گرمترین ساعات روز
ب: حفاظت دانههای سنگی انبار شده از تابش آفتاب
پ: پوشاندن بتن در حین حمل از تابش آفتاب
ت: آبپاش و مرطوب کردن سطوح خارجی قالبها و قبل و قبل از و بعد از بتنریزی
ث: انجام عملیات بتنریزی در کوتاهترین مدت پس از اختلاط.
کلیه کارهای بتنی باید به مدت حداقل 7 روز پس از ریختن و گرفتن بوسیله حصیر، گوئی، پارچههای ضخیم، ماسه، و نظایر آن، در مقابل باد و تابش آفتاب محافظت شده و با آبپاش همواره مرطوب نگاه داشته شود.
الف: هدف از قالب بندی
1- برای بدست آوردن اشکال مختلف سازه قالب به همان شکل لازم است چون بتون در ابتدا خمیری شکل است پس از ریختن در قالب شکل داخلی قالب را شکل میکند از این رو قالب به عنوان یک عامل مهم کارهای بتنی شناخته شده است.
2- برای بدست آوردن بتون متراکم و مقاوم با سطحی صاف و بینقص باید قالببندی آنرا با کمال دقت و طبق اصول و قواعد فنی و نقشههای تفصیلی ساخت.
عدم دقت در ساختن و نصب قالب گذشته از اینکه از مقاومت بتون خواهد کاست باعث زشتی کار میشود.
3- نگهداری خمیر بتن تا سخت شدن آن لذا وضعیت ساختمان موجود بدون مصالح قالببندی استفاده مکرر از قالب و آشنا بودن با روشهای صحیح اجرایی همه عواملی هستند که در طرح ساختن و بستن قالب تأثیری دارد. در اجرای یک سازه بتن اشکال و ابعاد نهائی و هم چنین کیفیت سطح قالب و نوع و جنس مصالح باید در مرحله اولیه قالببندی مورد توجه قرار گیرد.
الف: قالب چوبی: به علت شکلپذیری بهتر قالب چوبی معمولترین نوع قالببندی است. نوع چوب قالب بتن آرمه از نوع چوب صمندار (کاج و صنوبر) و یا جنگلی مشابه میباشد. مصرف چوب سفید فقط در قالب معمولی (قالب شالوده و یا قالب بتنهای بدون آرماتورییها) مجاز است.
ب: قالبهای فیبری مخصوص اکثراً به علت داشتن ماده ضد آب در مدار خمیر آبندی شدهاند بیشتر در قالببندی ستون گرد و سایر مواردی که شکلهای خاصی دارند استفاده میشوند.
برتری این نوع قالب صرفه جوئی و سرعت در بستن قالب است.
ج: قالب بتنی که معمولترین آن بلوک دیوار است که به جای قالب استفاده میشود و بین آن با ملات ماسه و سیمان پر میشوند.
د: قالبهای فلزی
در اغلب موارد و برحسب نوع کارگاهی برای ساختمان قطعات بتونی از قالبهای فلزی استفاده میشود قالبهای فلزی در مجموع گرانتر از قالبهای چوبی میباشد و هنگامی مقرون به صرفه هستند که چندین ساختمان مشابه و سری را بخواهد متوالیاً بتون ریزی کرده از یک قالب به دفعات متعدد استفاده نمود و بدین بطریقهای آنرا مستهلک نمایند.
الف: قالبهائی که برای همیشه در ساختمان باقی میمانند. این نوع قالب مخصوص سقفها میباشد مثلاً برای ساختن آن قالبهای مقعری از ورقههای نازک آهن تهیه مینمایند که پس از بتونریزی در جای خود (در محل قالببندی) باقی میمانند و در حکم آهنهای سقف محسوب شده پی از اتمام کار زیر آنها را (قسمتی که در معرض دید قرار دارد) رو کاری مینمایند.
البته با این روش مقدار آهن بیشتری مصرف میشود ولی در مخارج قالببندی سقف صرف جوئی میگردد.
ب: قالب فلزی متحرک که هر بار پس از بتون ریزی و محکم شدن بتون بار میشود و در جای دیگر مورد استفاده قرار میگیرد این قالبها از ورقههای نازک فلزی تشکیل شدهاند بطوری که لپههای آنها برگشتهاند و بوسیله پیچ و مهره بایست بهم متصل میگردد.
ابعاد قطعات این قالبها حدود 32×23 یا 50×50 سانتیمتر است و پس از اتصال به یکدیگر باید آنها را بوسیله نبشیهای دیگر نگهدارند.
قالبهای لغزان
1- قالبهای لغزانی که روی سطوح افقی حرکت میکردند.
2- قالبهای لغزانی که روی سطوح شیبدار حرکت میکردند.
3- قالبهای لغزانی که روی سطوح قائم حرکت میکردند.
دسته بندی | معماری |
فرمت فایل | doc |
حجم فایل | 37 کیلو بایت |
تعداد صفحات فایل | 91 |
فهرست مطالب
عناوین صفحه
مقدمه ...............................
فصل اول :
مطالعات اقلیمی و جغرافیائی منطقه: ...
1-1- خلاصه روند دویست ساله توسعه و گسترش شهر تهران:
1-1-1- تاریخچه هسته تاریخی شهر تهران و مراحل توسعه فیزیکی شهر تهران
2-1-1- ساختار جمعیتی شهر تهران ......
2-1- موقعیت جغرافیائی ...............
3-1- موقعیت طبیعی ...................
4-1- بهینه بندی خطر زمینلرزه در تهران
5-1- ویژگیهای اقلیمی:................
1-5-1- دما ..........................
2-5-1- میزان بارش ...................
3-5-1- رطوبت نسبی ...................
4-5-1- روزهای یخبندان ...............
5-5-1- روزهای بارانی ................
6-5-1- باد ..........................
7-5-1- تأثیر جهات وزش باد در ساختمان
8-5-1- تأثیر جهات تابش خورشید در استقرار ساختمان
9-5-1- ارتفاع بناها .................
10-5-1- بررسی و نتیجهگیری از آمارهای موجود جغرافیائی و اقلیمی منطقه
6-1- احکام و ضوابط طراحی معماری .....
فهرست منابع و ماخذ فصل اول ..........
فصل دوم:
تعریف و تبیین موضوع پروژه و نتیجهگیری برای انتخاب موضوع: ......................................
1-2- تعریف و تبیین موضوع ............
2-2- تعریف کودک .....................
1-2-2- تعریف کودکان خیابانی .........
3-2- تاریخچه کودکان خیابانی .........
4-2- وضعیت کودکان خیابانی در جهان ...
1-4-2- وضعیت کودکان خیابانی در ایران
5-2- «کودک در خیابان» و «کودک خیابان»
6-2- عوامل موثر بر خیابانی شدن کودکان
7-2- بزهکاری و بزهدیدگی کودکان خیابانی
8-2- وضعیت بهداشتی کودکان خیابانی ...
9-2- وضعیت روانی- اجتماعی کودکان خیابانی
1-9-2- مدرسه (اجتماع) ...............
2-9-2- وضعیت روانی ..................
3-9-2- مشکلات رفتاری .................
10-2- اقدامات ملی انجام شده در مورد این کودکان
1-10-2- سازمان بهزیستی ..............
2-10-2- شهرداری .....................
3-10-2- سازمان بینالمللی ............
11-2- آمار کودکان خیابانی ...........
12-2- نتایج بدست آمده از تحقیق دکتر رسول روشن در رابطه با وضعیت زیستی، روانی و اجتماعی کودکان خیابانی ایران
13-2- مقالات برخی از جرائد در مورد وضعیت نابسامان کودکان خیابانی ..............................
14-2- نتیجهگیری برای انتخاب موضوع فوق
فهرست منابع و ماخذ فصل دوم ..........
فصل سوم:
مباحث عمومی مرتبط با پروژه:..........
فصل 2
ویژگیهای جغرافیائی و اقلیمی منطقه :
موقعیت جغرافیایی- موقعیت طبیعی- زمین لرزه- ویژگیهای اقلیمی- احکام و ضوابط طراحی
ویژگیهای جغرافیایی و اقلیمی منطقه
محل مورد نظر برای طراحی، در منطقه دو، شهرداری تهران واقع میباشد. مطالعه ویژگیهای اقلیمی پروژه حاضر، بر اساس آمار 15 ساله (1344-1359 هـ .ش) ثبت شده در ایستگاه کلیماتیک مستقر در نمایشگاه بینالمللی تهران انجام مییابد. ایستگاه نمایشگاه بینالمللی در ارتفاع 1541 متری با عرض جغرافیایی 57 35 شمالی و طول جغرافیایی 25 51 قرار گرفته است.
در ابتدا توضیحاتی کلی در مورد موقعیت جغرافیایی شهر تهران آورده شده و سپس به تفصیل ویژگیهای اقلیمی منطقه مورد نظر بررسی شده است.
هدف از این مطالعات دستیابی به اطلاعاتی است که از طریق آن، میتوان معماری بناهای مورد نظر را تا حد امکان با شرایط و مقتضیات اقلیمی انطباق داد و شرایط زندگی و یا بهرهگیری از فضاهای مجموعه را با وضعیت آب و هوایی محیط تنظیم نمود.
1-2- خلاصه روند دویست ساله توسعه و گسترش شهر تهران
شهر تهران از حدود دویست سال پیش که پایتخت اعلام شد تا به امروز تحولات بسیاری را از سر گذرانیده است و طی ادوار مختلف توسعه، به کلان شهر کنونی تبدیل شده است. شهر تهران عمدتاً در سه مقطع گسترش یافته است؛ اول در زمان صفویه و قاجاریه، دوم در زمان پهلوی اول و سوم در زمان پهلوی دوم. حرکت طبیعی گسترش شهر تهران طی دوران صفویه و قاجاریه و به حکومت رسیدن رضاشاه، دچار تحولات جدیدی شد. وسعت شهر تهران طی دوران کوتاه حکومت وی به سرعت افزایش یافت و از حدود 24 کیلومتر مربع در سال 1301 هـ . ش به حدود 45 کیلومتر مربع در سال 1320 هـ .ش رسید. یعنی مساحت شهر در ظرف کمتر از 20 سال، تقریباً دو برابر شد. هسته مرکزی شهر نیز با توجه به جاذبه شمال شهر و شمیرانات به طرف آن کشیده میشود، به طوریکه امروزه مرکز تهران از بازار به خیابان انقلاب تغییر مکان داده است، یعنی 4 کیلومتر حرکت کرده است. در نقشههای گسترش شهر تهران در دورههای مختلف، این تغییرات به وضوح دیده میشود. جمعیت شهر تهران در طی سالهای 1166 هـ . ش تا 1365 هـ . ش از بیست هزار نفر به 6 میلیون نفر رسید. یعنی 300 برابر و وسعت شهر از 2/7 کیلومتر مربع به 620 کیلومتر مربع رسید یعنی وسعت شهر 76 برابر شد. (1)
2-2- موقعیت جغرافیایی
شهر تهران در دامنه جنوبی کوههای البرز و حاشیه شمالی کویر مرکزی ایران، در دشتی نسبتاً هموار واقع شده که شیبش از شمال به جنوب است و به وسیله دو رود اصلی کرج در باختر و جاجرود در خاور همراه با رودهای فصلی جعفرآباد یا دربند، دارآباد، درکه و کن که همگی از شمال به جنوب جریان دارند، مشروب میگردد. شهر تهران از نظر جغرافیایی در عرض شمالی 35 و 35 تا 50 و 35 و طول خاوری 4 و 51 تا 33 و 51 قرار دارد و ارتفاعش در جنوب (پالایشگاه تهران) 1160 متر و در نواحی مرکزی (پارک شهر) 1210 متر و در شمال (سعدآباد) 1700 متر است. دشت تهران به طور کلی دارای آب و هوایی گرم و خشک است و فقط نواحی شمالیاش که در دامنههای کوهستان البرز واقع است، اندکی متعادل و مرطوب میباشد.
هوای شهر تهران در تابستان گرم و خشک و در زمستان معتدل و سرد است. حداکثر دمای ثبت شده حدود 44 درجه و حداقل 8/14- درجه و متوسط سالانه آن حدود 7/16 درجه سانتیگراد است. متوسط بارندگی حدود 320 میلیمتر و دامنه تغییرات آن از 200 تا 400 میلیمتر، از سالی به سال دیگر نوسان دارد. از نظر زمین لرزه، تهران جزء مناطق پرزیان (8 تا 10 درجه مرکالی) محسوب میگردد. (2)
3-2- موقعیت طبیعی
شهر تهران در بخشی واقع شده، که از نظر طبیعی بزرگترین تغییرات را در کنار خود دارد. دریای مازندران در فاصله جغرافیایی 120 کیلومتری محدوده تهران قرار دارد. رطوبت و بارندگی زیاد در سواحل آن، نواحی سرسبز شمالی را ایجاد نموده و هوای معتدل را به طرف جنوب هدایت میکند. سلسله جبال البرز، تهران را از سواحل دریای مازندران جدا نموده و مناظر کوهستانی شمال شهر را به وجود میآورد. منطقه تهران در دامنه بلندترین ارتفاعات البرز قرار گرفته، که از شمال به جنوب دارای شیبتندی میباشد. برودت هوای کوهستان و اختلاف درجه آن با دشتهای گرم منطقه جنوب تهران، وزش باد خنکی را از جانب شمال به جنوب باعث میشود. در جنوب شهر تهران ناحیه بیابانی قرار گرفته و هوای آن گرم و خشک است. در قسمت غربی دشت قزوین قرار گرفته که یکی از مناطق حاصلخیز جنوب کوههای البرز را تشکیل میدهد. (3)
4-2- پهنهبندی خر زمین لرزه در تهران
مطالعات زمینشناسی نشان میدهد که اصولاً شهر تهران در منطقه زلزله خیز قرار دارد و با توجه به این نکته، لازم است که در ساخت و سازهای تهران به این نکته توجه کامل شود. اما در همین رابطه بخشهایی از گستره تهران در مناطقی از پهنه زمین لرزه قرار دارند که لازم است از ساخت و ساز در این نقاط اجتناب شود. این مناطق عموماً در شمال تهران متمرکز شده و مجموعهای از این نقاط نیز در جنوب شهر تهران به سمت غرب تمرکز یافتهاند. لذا در تمامی طراحیها، مسئله زلزله خیزی باید مد نظر قرار گیرد. در ایران فعالیتهای مختلفی جهت شناسایی این پدیده مخرب صورت گرفته، که در نهایت منجر به تدوین آئیننامه طرح و محاسبه ساختمانها در برابر زلزله (نشریه شماره 82 مرکز تحقیقات ساختمان و مسکن) شده است. با توجه به این آئیننامه، سازه باید حتیالامکان با پلانی ساده و متقارن طراحی گردد. همچنین باید دارای سیستم فلزی یا بتنی باشد و قدرت انتقال نیروهای زلزله را داشته باشد. (3)
5-2- ویژگیهای اقلیمی
؟؟؟؟؟؟؟؟ نمیتوان نشان داد، تهران به 5 حوزه اقلیمی تقسیم شده است لذا با در نظر گرفتن این مطلب تنها آمار مربوط به حوزه مورد نظر بررسی شده است.
1-5-2- دما
بر اساس امار تحلیل شده 15 ساله ایستگاه نمایشگاه بینالمللی تهران، سردترین ماه سال، دی با حداقل 4/3- درجه و گرمترین ماه تیر با حداکثر 4/33 درجه است. برای گرمایش با توجه به حرارت پایین میتوان از وسایل مکانیکی خصوصاً نوع غیر مرطوب آن در ساختمانها استفاده کرد. به طور کلی آب و هوای حوزه شمالی تهران در تابستان نسبتاً مناسب و در زمستان سرد است. مطلق درجه حرارت ثبت شده در طی 15 سال در حوزه شمالی حداقل 5/13- درجه و حداکثر مطلق 39 درجه است. میانگین مطلق درجه حرارت در فصول مختلف سال در این حوزه از 5/7- تا 7/35 تغییر میکند. (4)
2-5-2- میزان بارش
بر اساس آمار بارندگی دوره 15 ساله (1344 تا 1359) در حوزه شمالی شهر تهران، میزان بارندگی در این منطقه از 300 تا 500 میلیمتر در فصول مختلف سال متغیر بوده است و حداکثر میزان بارندگی در ماه اسفند به میزان 82 میلیمتر است. در ماههای آذر، دی و بهمن، بارندگی در این حوزه متداول است. ماههای خرداد، تیر، مرداد و شهریور با بارندگی محدود از کم بارانترین ایام در این حوزه میباشد. با توجه به نمودار میانگین دمای روزانه و بارش ماهانه، فصل خشک حوزه شمالی، از ماه تیر شروع شده و تا شهریور ادامه مییابد. حداکثر مطلق ثبت شده بارندگی طی یک ماه در این حوزه 185 میلیمتر است و میانگین مجموع بارندگی سالیانه در طی این 15 ساله 409 میلیمتر گزارش شده است. (4)
3-5-2- رطوبت نسبی
متوسط حداکثر میزان رطوبت نسبی در حوزه شمالی مربوط به ماههای آذر و دی است که میزان رطوبت به 76 تا 79 درصد میرسد و حداقل آن مربوط به ماههای تیر، مرداد، شهریور میباشد که این میزان بین 40 تا 43 درصد است. از رابطه بین میزان رطوبت و دما استنباط میگردد که ماههای سرد این حوزه دارای رطوبت کافی و در فصول گرم از میزان رطوبت کاسته شده و در حدود نامناسبی قرار دارد. (5)
4-5-2- روزهای یخبندان
آمار میانگین دوره 15 ساله حوزه شمالی نشان میدهد که در این حوزه در طول سال به طور متوسط 73 روز یخبندان طی ماههای آبان الی اسفند به وقوع میپیوندد که حداکثر آن در ماه دی و حداقل آن در ماه آبان گزارش شده است. (5)
5-5-2- روزهای بارانی
تعداد روزهای بارانی که در آن بیش از 1 میلیمتر در حوزه شمال تهران باران باریده است، بر اساس آمار 15 ساله مورد مطالعه، به صورت میانگین 57 روز میباشد. حداکثر باران که در طی یک ماه باریده، در طی این دوره آماری 185 میلیمتر و طی یک روز 5/24 میلیمتر گزارش شده است. در طی آمار ثبت شده 15 ساله در ماه شهریور در این حوزه بارش نبوده و بیشترین بارش متداول در ماه اسفند با میانگین 9 روز میباشد. (5)
6-5-2- باد
جمعبندی امار جدول حداکثر وزش باد 15 ساله نشانگر آن است که :
ماههای آذر، دی، بهمن ماههای آرامی هستند.
بیشترین میزان وزش باد در ماه فروردین است.
سرعت تمامی بادهای منطقهای تهران از 16 کیلومتر در ساعت کمتر بوده و این آمار، حاکی از بودن باد مطلوب، در طول فصول گرم سال است.
به جز فصل تابستان نیمی از بادها از سمت غرب و 10 درصد از جنوب شرقی میوزند.
در فصل تابستان 35 درصد بادها از سمت جنوبشرقی و 17 درصد از سمت جنوب منطقه میوزند.
بادهای نسبتاً شدید (از 10 کیلومتر به بالا) از سمت غرب به سوی منطقه میوزند که سرعت این گونه بادها در فصول بهار، پائیز و زمستان تا 14 کیلومتر در ساعت به ثبت رسیده است.
در فصل تابستان، علاوه بر بادهای وزنده از سمت غرب، بادهای جنوبشرقی نیز از سرعت و دفعات کافی بهرهمند میباشد. بادهای جنوب شرقی از جریانهای هوای نواحی مرکزی ایران بوده و به عنوان باد غالب در فصل تابستان گرد و غبار و شن به همراه میآورند. بادهای موسمی و محلی تهران به دلیل وجود ارتفاعات و درجه حرارت توده سنگی شمال و دشت جنوب، در روز از جنوب به شمال و در شب از شمال به جنوب میوزد. (6)
7-5-2- تاثیر جهات وزش باد در ساختمان
دومین عامل مهم در تعیین جهت مناسب ساختمان، وزش باد میباشد. با توجه به مطالعه آمار مربوطه، در فصول بهار، پائیز و زمستان بادهای نسبتاً شدید از سمت غرب میوزد و در فصل تابستان علاوه بر سمت غرب، بادهای جنوبشرقی که از جریانات هوای نواحی مرکزی ایران بوده، به عنوان باد غالب تابستان، گرد و غبار و شن به همراه میآورند. بنابراین میتوان باد غرب را به عنوان باد غالب و مزاحم در نظر گرفت و تمهیدات لازم را جهت تعدیل آن اتخاذ کرد. با توجه به این نکته که زاویه 25 درجه، زاویه حد پذیرش باد و یا رد باد میباشد و با توجه به جهت باد مزاحم که از سمت جنوب غربی میوزد، مناسبترین جهت استقرار بنا در رابطه با وزش باد، محور 45 درجه جنوبشرقی است و با توجه به زاویه حد پذیرش و یا رد باد. جهات 20 درجه از جنوب به شرق تا 20 درجه از شرق به جنوب جهات قابل قبول در رابطه با رد باد مزاحم میباشد. ضمناً بهتر است که از امتدادهای طولانی و ایجاد کانال در جهات شرقی- غربی اجتناب کرد و با توجه به جهتهای اصلی استقرار واحدهای ساختمانی در حوزهای که توضیح داده شد، به کمک ایجاد شکستگیهای در راستای شرقی- غربی، باعث جلوگیری از کانالیزه شدن باد غالب غربی شده و برای استفاده از بادهای محلی که باد مطبوع میباشد و از سمت شمال به جنوب و بالعکس میوزد، بهتر است. کانالهای تهویهای بین ساختمانها در جهت شمالی- جنوبی در نظر گرفته شود. (6)
8-5-2- تاثیر جهات تابش خورشید در استقرار ساختمان
اگر به نمودار وضعیت تابش خورشید در عرض جغرافیایی مربوط به تهران توجه شود (نمودار موقعیت و زوایای تابش آفتاب در طول سال) مشاهده خواهد شد، زاویه تابش آفتاب در اول دی ماه به حداقل (30 درجه) و در اول تیرماه به حداکثر (78 درجه) میرسد. بدین ترتیب در اول دی ماه که کوتاهترین و معمولاً یکی از سردترین روزهای سال است، یک دیوار جنوبی به ارتفاع یک متر، سایهای به طول 73/1 متر، در پشت خود ایجاد مینماید. همین دیوار در اول تیرماه سایهای به طول 21 سانتیمتر، در پشت خود ایجاد مینماید.
بر این اساس، لازم است به این زاویه توجه شده، فاصله دو ساختمان از یکدیگر به نحوی باشد که تابش خورشید به داخل هر دو ساختمان نفوذ نماید. بدین خاطر ساختمانها میباید به نسبت 1 به 73/1 ارتفاع ساختمان جنوبی و با توجه به کسر اختلاف تراز از یکدیگر فاصله داشته باشند. رعایت این نسبت فاصله موجب میگردد تا در طول زمستان، ساختمانها و یا بخشهای مجزای یک بنا آفتابگیری کاملی داشته باشند.
با توجه به نمودار مذکور مشخص میشود که در گرمترین مواقع سال مدت زمانی که خورشید در آسمان تهران حضور دارد، از ساعت 5 صبح الی 19 و در سردترین مواقع سال از ساعت 30/7 الی 45/16 میباشد. به همین منظور، نمودار مسیر حرکت خورشید در منطقه میتواند در تعیین موقعیت و جهات اصلی و فرعی ساختمانها، طراحی پنجرهها، سایبانها و محاسبات حرارتی و … مورد استفاده قرار گیرد. برای تعیین جهت استقرار بنا و مقابله با گرمای حاصله از خورشید در مواقع گرم و در اختیار گرفتن این انرژی در مواقع سرد، باید حالتی را انتخاب کرد که بنا در تابستان کمترین حرارت را از آفتاب و محیط اطراف کسب کند و در زمستان علاوه بر اینکه کمترین حرارت را از دست بدهد، بیشترین حرارت را از آفتاب و محیط اطراف کسب نماید. از وسایلی از قبیل پیرانومتر (Pyranometer) میتوان دریافت که برای کسب گرمای حاصله از خورشید در مواقع سرد و گرم باید بنا در محدوده جنوب تا 45 درجه به سمت شرق قرار بگیرد. با توجه به این مطلب که تهران از نظر آب و هوایی دارای زمستان سرد و تابستان تقریباً گرم است باید سعی بر این داشت که انرژی خورشیدی تابنده شده بر سطوح قائم بنا در زمستان به بیشترین سطوح بنا تاثیر بگذارد و در تابستان کمترین سطوح ساختمان در معرض این پرتوها باشد.
در نمودار انرژی خورشیدی تابیده شده بر سطوح قائم حداکثر انرژی که توسط دیوارهها (در 36 درجه عرض جغرافیایی برای زمانی که بنا 5/22 درجه به طرف شرق انحراف داشته باشد) از خورشید تابیده شده کسب میشود مشاهده میگردد. در این وضعیت جبهه جنوبی مجموعه در زمستان تقریباً از ساعت 5/7 صبح شروع به کسب انرژی از پرتوهای خورشید میکند و در ساعت 30/10 به حداکثر میزان ذخیره میرسد و تا ساعت 4 بعداز ظهر این ذخیره را به تدریج از دست میدهد که در همین زمان جبهه غربی به حداکثر میزان ذخیره انرژی خورشید میرسد.
از دیگر جهات شایان تاثیر تابش آفتاب، مقابله با تابش آفتاب در فضاهای باز و مرتبط با هوای آزاد است.
در مراکز تجاری و اداری، عمدتاً فعالیتهای آمد و شد در معابر بین ساعت 8 صبح الی 5 بعداز ظهر صورت میگیرد و لازم است در فصول تابستان و زمستان آسایش عبوری تامین شود. در استقرار تراکمی چنین کاربریهایی میتوان با تو رفتگی طبقات همکف به نسبت طبقات فوقانی فضای عبوری سرپوشیدهای را تامین نمود. این فضا در تابستان عابرین را از تابش آفتاب محفوظ خواهد داشت و در مواقع بارانی از خیس شدن عابرین جلوگیری خواهد کرد.
9-5-2- ارتفاع بناها
نورگیری کامل و بهرهوری از انرژی خورشیدی محدودیتهایی را در حداکثر ارتفاع بناهای شهر با توجه به قطعات تفکیکی خواهد داشت. به طوری که اگر قطعات تفکیکی اراضی داخل شهری طولی حدود 20 متر داشته باشند، حداکثر ارتفاع بنا با توجه به شیب 5 تا 6 درصد و پوشش 60 درصد زمین در همکف، حدوداً 6 متر یا دو طبقه است. برای رسیدن به ارتفاعهای چندین طبقه طول قطعات تفکیکی باید بسیار بیش از 20 متر باشد.(6)
دسته بندی | مکانیک |
فرمت فایل | doc |
حجم فایل | 103 کیلو بایت |
تعداد صفحات فایل | 165 |
مهندسی Piping سه شاخه کلی را شامل می شود:
1) Material of Piping
2) Supporting & Stress Analyse
3) Design
در این جا به بررسی مدارک مورد نیاز برای شروع یک پروژه در یک واحد فرآیندی می پردازیم هر پروژه شامل سه بخش و یا سه مرحله می باشد که شرکتهای مجری انجام پروژه براساس نوع فعالیت تقسیم بندی می شوند. سه بخش کلی پروژه عبارتند از:
1) Engineering 2) Procurment 3) Construction
مرحله اول: بخش مهندسی یا همان بخش طراحی انجام پروژه می باشد.
مرحله دوم: تهیه ابزار آلات لازم برای انجام پروژه می باشد.
مرحله سوم: ساخت و ساز پروژه می باشد.
شرکتهای مختلف بنا به نوع فعالیت به شرکتهای EPC یا EP و یا PC تقسیم بندی می شوند عمده شرکتهای معتبر در این صنعت از نوع شرکتهای EPC هستند.
در این مرحله به معرفی نقشه ها و مدارک مورد نیاز برای انجام یک پروژه میپردازیم.
به منظور انجام فعالیتهای مربوط به یک پروژه لازم است که یک تیم پروژه تحت نظر یک مدیر پروژه مشغول شوند. مدیر پروژه مسئول و کنترل کننده تمامی فعالیتها بوده و پاسخگوی مسائل مربوط می باشد. افراد مشغول در انجام پروژه مسائلی از قبیل طراحی مهندسی، زمان بندی و قیمت تمام شده را در موارد مختلف به مدیر پروژه ارائه می کنند که البته معمولاً این موضوع شامل مسائل فنی پروژه نمی شود.
دپارتمان مهندسی مکانیک مهندسین را برای انجام یک پروژه خاص در زمینه های زیر بکار می گیرد. این زمینه ها عبارتند از: طراحی سیستمها و تجهیزات، ساخت و گرمایش و تهویه مطبوع و نیز طراحی تیم های Piping.
مهندسین Piping موظفند پروژه را طوری هدایت کنند که اهداف نهایی پروژه تامین شود برخی از این مسئولیت ها شامل موارد زیر است:
- انجام مراحل طراحی مهندسی کارخانه فرآیندی و ارائه طرح سیستم Piping
- تحلیل تنش لولهها
- طراحی تکیه گاهها
- پیشگیری از واماندگی و خروج سیال از سیستم
- به پایان رساندن موارد مشخص شده در قرارداد پروژه
- ارتباط با بخشهای دیگر پروژه به منظور هماهنگی میان تمام گروههای مربوطه
و تطابق لازمه با مشخصات استاندارد، مشخصات فنی، برنامه زمانبندی تعیین شده و در نهایت بودجه در نظر گرفته شده است.
برای کنترل تمامی فازهای طراحی، آنالیز، تدارکات، ساعت و نصب لوله ها و تکیه گاهها و سایر قسمتهایی که در شکل گرفتن تیم Piping لازم است سندهای فنی موجگود است که ابزار و روشهای لازم را فراهم می کنند.
مهندسین Piping با مطالعه دقیق نیازها تشخیص می دهد که چه مدارکی لازم است و در چه زمانی باید مورد استفاده و یا برای تایید به دیگر اعضای پروژه تحویل داده شود.
مدرک های مورد نیاز در مهندسی Piping شامل موارد زیر است:
نقشه شماتیکی است که تعریف کلی از فرآیند سیستم را توسط نمایش تجهیزات و خطوط اصلی فرآیند همراه با مشخصات پروسی این خطوط ارائه می دهد این مشخصات عموماً شامل درجه حرارت و فشار کاری (عملیاتی)، دبی جریان، دانسیته و ویسکوزیته، میزان و یا درصد عناصر مهم در خطوط مختلف می باشد. این مهم توسط مهندسی شیمی- فرآیند آماده شده و هدف پروژه و نحوه فعالیت کارخانه را از لحاظ جریان فرآیند معین می کند این دیاگرام در مرحله Basic Design ایجاد می شود.
سندی که براساس P.F.D پایه گذاری می شود وی با جزئیات کاربردی
Piping and Instrument Diagram می باشد.
این دیاگرام مشخصات فرآیندی تجهیزات، اجزاء و اقلام مورد نیاز در سیستم لوله کشی نیازهای ابزار دقیق و محل قرارگیری آنها، نحوه اتصالات لوله ها را بین تجهیزات مختلف، سیستم عایق بندی، سایز لوله ها، کلاسهای مختلف کاری براساس نوع سرویس و فشار کاری (Rating)، خطوط شیبدار و مقدار شیب، جهت جریان و… را براساس شماره خطها نشان می دهد. نکته قابل توجه در توضیحات بالا این است که آندسته از اقلام لوله کشی که در طراحی Piping Layout (چیدمان لولهکشی) مورد نیاز واقع می شوند در نقشه P&ID دیده نمی شوند. از جمله زانویی ها که دقیقاً بستگی به طریقه چیدمان لوله کشی دارند.
نکته دیگر در این مبحث این است که مجموعه سرویس که تعیین کننده جنس لوله و فشار کاری که اصطلاحاً Rating می گویند را با کلاس کاری نمایش می دهند. نکته بعدی که در (P&ID) به آن اشاره می شود.
که برای ارجاع به Line List پروژه Piping بکار می رود این شماره تا وقتی که پارامترهای طراحی تغییر نکند ثابت باقی خواهد ماند لذا وقتی یک شماره خط تغییر می کند.
باید انتظار داشت که برخی از پارامترها از قبیل سرویس خطوط (سیالی که در داخل لوله جریان دارد)، ماده بکار رفته، دما، فشار و یا هر ترکیب دیگری از این خصوصیات تغییر کرده باشد.
به طور خلاصه شماره خطوط شامل اطلاعات زیر است:
- قطر اسمی
- سرویس داخل لوله
- اعدادی که شماره خط را مشخص می کند
- کلاس کاری
بعنوان مثال CWS-1005-150CS-16 یک شماره خط است که به ترتیب از سمت راست مشخص کننده لوله با قطر اسمی 16 اینچ و کلاس کاری 150CS به معنای 150 پوند rating و جنس کربن استیل CS و شماره خط 1005، در یک سیستم تغذیه آب سرد Cooling Water Supply.
اعداد نشانگر شماره خط در P&ID به منظور مشخص شدن در لیست خط
(Line List) در نظر گرفته می شوند. لیست خط شامل تمام خطوط پروژه می شود که با توجه به سیستم مربوطه و سپس با توجه به اعداد نشانگر طبقه بندی می شوند. این لیست تمام پارامترهای طراحی خط مربوطه شامل قطر لوله، ضخامت دیواره، نوع سیال، دمای طراحی و دمای کاری جنس ضخامت عایق و استاندارد بکار رفته را در بر می گیرد. علاوه بر Line List اکثر پروژه ها لیستی از شیرهای مورد استفاده در سیستم Piping نیز دارند شماره شیر که برای هر شیر بطور منحصر به فرد تعیین می شود، سیستم مربوطه، کلاس و احتمالاً نوع شیر را مشخص می کند؛ نمونه Line List در ادامه آورده شده است.
این مدرک تجهیزات را که باید در محدوده واحد فرآیند یا واحدهای جانبی قرار گیرند همراه با شماره بندی توضیحات فرآیندی لیست می کند. نمونه لیست تجهیزات در ادامه آمده است.
مدرکی است که براساس استانداردهای مختلف طراحی خارج می شود. چکیده استانداردهای طراحی است. این مدرک محدودیت های کاری را در طراحی و خرید و ساخت و ساز و… براساس مسائل اقتصادی منطقه، مسائل فنی و هماهنگی گروههای مختلف کاری ایجاد می شود. این مدرک در حقیقت بایدها و نبایدهای موجود در استاندارد را پوشش می دهد.
مزیت های این مدرک شامل موارد زیر است:
1- جلوگیری از اتلاف دقت در پروژه در مراجعه به تک تک استانداردها.
2- سلیقه ای کار نشدن پروژه و یک دست و تیپ بودن کار.
3- جلوگیری از اشتباهات فنی در مسائل حائز اهمیت.
4- مسائل و محدودیت اقتصادی منطقه در موجود و یا نبودن امکانات ساخت و یا خرید از جمله مهمترین Specها می توان به موارد زیر اشاره کرد:
- Piping Material Specification (P.M.S)
- Insulation Specification
- Painting Specification
- Supporting Specification
Plot Plan یکی از مدارک مهم وکلیدی میباشد که طی فاز مهندسی ایجاد میگردد و از آن برای جانمایی تجهیزات و قسمتهای مختلف مانند واحدهای پروسس، لوله کشی و… و همچنین ثبت روال فعالیتهای عمده مهندسی و ساخت استفاده می گردد.
Plot Plan واحد فرآیند عبارت است از یک نقشه آرایش یافته که مشخص کننده محدوده کار یک کارخانه، جاده، ساختمانهای صنعتی و غیرصنعتی، تجهیزات و محل قرارگیری آنها سازه های مورد نیاز واحد، مانند Piperack (سازه ای است که لوله به صورت دسته بر روی آن قرار می گیرد) و… که این موارد برای یک فرآیند مشخص طراحی می گردد.
Plot Plan نهایی تمام اجزاء را با شماره های مخصوص مشخص می کند و با مقیاس اشکال تجهیزات و امکانات نگهداری را در نمادهای عمودی و افقی دو بعدی نشان می دهد، عموماً آرایش ها و نقشه های سه بعدی برای تجسم بهتر به کار برده می شود.
زمینههای مختلف استفاده از Plot Plan در قسمت های مختلف پروژه در بخش زیر توضیح داده شده است.
- طراحی لوله: Plot Plan به منظور جانمایی تجهیزات و تیم های لوله کشی فرآیند و بررسی عدم برخورد لوله ها به هم و همچنین برآورد اجناس و مقادیر لوله مورد استفاده قرار می گیرد.
- سازه: Plot Plan به منظور ایجاد نقشه های نواحی مختلف از لحاظ ارتفاعی و محلهای تخلیه و زیرزمینی، طراحی فونداسیون و سازه ها و لوله ها، محیطهای محصور و محیطهای مسقف و برآورد تمامی اجناس عمده بکار می رود.
- مهندسی برق: Plot Plan به منظور ایجاد نقشه های تفکیکی محیط تعیین مکان سویچرها و پستهای فرعی و مراکز کنترل موتور، تعیین مسیر کابلها و تخمین اجناس عمده به کار می رود.
- مهندس ابزار دقیق: Plot Plan جهت تعیین مکانهای ابزار دقیق اتاقهای کنترل، مسیر کابلها، کنترل خانه اصلی و برآورد اجناس عمده مورد استفاده قرار می گیرد.
- مهندسی سیستم ها: Plot Plan جهت تسهیل طراحی هیدرولیکی، سایز کردن لوله و نیازهای قطع جریان امکانات مورد استفاده قرار می گیرد.
- زمان بندی و کنترل پروژه: Plot Plan جهت زمان بندی فعالیتهای مهندسی در دوره های تعیین شده مورد استفاده قرار می گیرد.
- ساخت: Plot Plan جهت زمان بندی مراحل ساخت تمام تجهیزات کارخانه مطالعات مربوط به طنابها و کابلهای مورد استفاده در جابجایی های تجهیزات و باربرداریهای عظیم بررسی قابلیت های ساخت و فضاهای لازم جهت هدایت در طول دوره ساخت مورد استفاده قرار می گیرد.
- برآورد هزینه: Plot Plan جهت برآورد کلی کارخانه یا پالایشگاه بکار برده میشود.
- استفاده کارفرما: Plot Plan جهت بررسی های امنیتی، اپراتوری، نگهداری و نیز به منظور ایجاد یک نقشه همزمان با ساخت از چیدمان کارخانه و مسائل کنترل پیمانکاران مورد استفاده قرار می گیرد.
نمونه یک Plot Plan در ذیل آمده است.
براساس P&ID و Plot Plan و Specها نقشه های طراحی Piping تهیه می شوند این نقشه ها مسیر و شکل دقیق سیستم Piping را نشان می دهد و اصلی ترین document مورد استفاده توسط مهندسین Piping است. این نقشه ها معمولاً شامل نماهای elevation و Plan می شوند (نمای Plan نما از بالا و نمای elevation نمای از جانب است).
یک نمای Plan از یک سیستم Piping به طور نمونه در شکل A آورده شده است. این نما لوله ها و مخازن اصلی و همچنین چگونگی عبور لوله از ساختمان را نشان میدهد وی از طرف دیگر نمای پلان تفاوت ارتفاع را به خوبی نشان نمی دهد لذا برای مشخص شدن مسیر Piping هر دو نمای Plan و elevation لازم است. (شکل B نمای elevation را نشان می دهد) برای مثال ارتفاع نازل A به آسانی قابل تشخیص نیست همان طوری که در این شکلها دیده می شود. Piping به صورت یک خط توپر نشان داده می شود.
زمانی که مسیر Piping مشخص شد باید با اندازه گیری نسبت به نقاط مبنا روی نقشه تعیین گردد. معمولاً Piping نسبت به دیوار یا ستون ساختمان که محل آنها ثابت است، اندازه گیری می شود.
مبنای دیگر در سیستم Piping موقعیت شمال (Plant North Arrow) است موقعیت شمال در نقشه های Piping نمایش داده شده و بعنوان یک جهت ثابت مبنا برای طراحی Piping به کار می رود، البته جهت شمال نشان داده شده در نقشه لزوماً شمال واقعی نیست بلکه به صورت قراردادی اینطور فرض می شود موقعیت شمال معمولاً موازی با یک سری خطوط ستونهای ساختمان انتخاب می شود و مرسوم است که مسیر Piping حتی المکان موازی یا عمود بر موقعیت شمال باشد، تا بتوان بیشترین استفاده را از سازه های ساختمان به عنوان تکیه گاه (Support) کرد.
برای جلوگیری از تداخل کارها و ایجاد فضای لازم برای نصب تمام دستگاهها از نقشه های مرکب استفاده می شود. به این ترتیب هر گروه قادر خواهد بود بطور مستقل از گروههای دیگر کار خود را انجام دهد.
نقشه های مرکب ترکیبی از نقشه های سازه ای، وسایل سیستم و Piping در هر حوزه که شامل سیستم Piping سیستمهای HVAC و تجهیزات دیگر می شود. این نقشه ها به عنوان ابزار طراحی امکان استفاده موثر از فضای موجود را فراهم می کند.
از طرفی ممکن است از نقشه مرکب استفاده نشود. در عوض مدل اشل شده یا ماکت بکار رود مدل Scale در واقع نسخه کوچک شده پروژه واقعی است که شامل سازه ها، تجهیزات و Piping می شود. این طرز نمایش در طراحی، ساخت و نصب Piping و Supportها کمک می کند.
هزینه ساخت یک Scale ممکن است تا حدود 1/0 درصد از هزینه نهایی باشد. نمونه یک نقشه مرکب در ادامه آمده است.
در مراحل اولیه از نقشه های Piping بعنوان منبع استفاده می شود. در بعضی مواقع لازم است که از نقشه های ایزومتریک استفاده شود. نقشه های ایزومتریک در واقع همان طور که از نامشان پیداست نمایش سه بعدی از سیستم Piping است که در نقشههای Piping دو بعدی نشان داده می شود. ایزومتریک Piping زمانی استفاده میشود که نمایش مفهومی و طرح کلی مهمتر از ابعاد دقیق اشل باشد این نقشه ها در نصب و راه اندازی Piping و مدلهای تحلیل تنش استفاده می شود.
ایزومتریک خطوط لوله را به طور کامل بین تجهیزات نشان می دهد و برای اسمبلی و ساخت لوله به کار می رود. در شکل کامل شده ایزومتریک ممکن است اطلاعات مناسبی در مورد ساخت لوله و احداث تیم Piping وجود داشته باشد. به همین دلیل وقتی توسط گروههای طراحی تحلیل ساخت و احداث استفاده می شود نمایش بهتری از سیستم Piping نسبت به نقشه های elevation فراهم می کند.
اساس بارهای طراحی، اندازه لوله، شکل تیم و موقعیت اولیه تکیه گاهها بایستی روی ایزومتریک مشخص شود. تا توسط تحلیل کننده تنش لوله ها استفاده شود. نمونه ایزومتریک Piping در ادامه آمده است.
ایزومتریک ساپورت با استفاده از نقشه های Piping و ایزومتریک Piping به عنوان مرجع ساخته می شود. این نقشه های ایزومتریک در واقع مدلهایی بر کار تحلیل تنش هستند. و بایستی تمام اطلاعات لازم برای این کار را فراهم کنند. موارد زیر در این نقشه پوشش داده می شود.
1- سیستم مختصات سراسری global بایستی با جهات مثبت خطی و زاویهای برای محورهای مرجع z,y,x نمایش داده شود.
2- سیستم Piping باید نسبت به یک ساختمان مبنا مشخص شود.
3- نقاط گره ای لوله باید در جاهایی مانند نقاطی که تنش یا خیز بالایی از آن انتظار می رود انتخاب شوند تشخیص نقاطی که تنش یا خیز بالا دارند با مطالعه بارگذاری روی طول لوله و شرایط مرزی لوله ها ممکن است.
4- موقعیت، کارکرد و راستای عکس العمل تکیه گاهها باید مشخص شوند.
5- ابعاد بین نقاط گره ای باید با تجزیه به مولفه هایی موازی با سه محور اصلی تعیین شوند.
6- پارامترهای دیگر طراحی Piping (مانند اندازه لوله، وزن، دما، فشار، مواد، وزن شیرها، سختی تکیه گاهها و عوامل زلزله و…) را می توان نشان داد.
هنگامی که سیستم در حال سرویس و کارات طبعتاً بنا به حساسیت سیستم باید مراقبت های ویژه ای صورت گیرد تا طی بررسی های دوره ای خطر وقوع خرابی و واماندگی در سیستم آشکار شود.
در برخی سیستم ها، بازرسی در حال سرویس (ISE) تا موقعی که از سیستم سیال نچکد انجام نمی شود. در حالیکه در Piping نیروگاهها این بازرسی ها ضروری است.
این نقشه ها به منظور کمک به گروه بازری در امتحان کردن اجزاء و قسمتهایی نظیر جوشها که نیاز به بازرسی دارند تهیه می شوند. این مدرک آخرین مدرک در اتمام پروژه است.
شکل ارائه شده در ارتباط با این قسمت نقشه کامپیوتری ISE تولید شده برای یک حالت نمونه را نشان می دهد جاهایی که در این مسیر لوله احتیاج به بازرسی دارند (مثل شیرها و ابزار و پایه ها و…) در این نقشه مشخص شده است.
در این مرحله به بررسی شاخه Material of Piping می پردازیم.
اقلام مورد نیاز در انجام یک پروژه در مدارک نهایی آن مثل P&ID اشاره شده است و کاملاً باید براساس مدارک تهیه شود. قطعات و تامین کننده آنها به شکل زیر است.
1- Requisition: بسته مزیدی که به سازنده سفارش داده می شود. که قبل از مرحله بالا است و بعد از بررسی قطعه ساخته شده بنا به ایتمهای مهم نسبت به انتخاب سازنده اقدام می شود.
2-
Techninal/ Commerical Bid
Techninal/ Commerical Propasal
Techninal/ Commerical Offer
3- Purchase Order: سفارش دادن قطعات بنا به دو بررسی انجام شده در مرحله قبلی و انتخاب سازنده مناسب برای انجام پروژه.
اقلام مورد نیاز برای انجام پروژه به دو نوع کمی تقسیم بندی می شوند.
1) Stundrditem: که توسط استاندارد مورد استفاده در پروژه نوع جنس مشخص می شود.
2) Specialitem: که از روی نقشه های پروژه و بنا به تشخیص بخش Material انتخاب می شود. فرد نیز باید قطعه استاندارد باشد.
اقلام مورد نیاز برای انجام پروژه عبارتند از:
Pipe:
1) NPS (Nominal Pipe Size): اندازه اسمی لوله که از 2in شروع می شود. دارای اندازه بزرگتری می شود. نکته قابل توجه در NPS این است که در اندازه های NPS زیر 14in قطر خارجی لوله بزرگتر از NPS می باشد. مثلاً برای NPS، Lin، قطر خارجی (OD) تقریباً برابر 214 می باشد.
2) OD (Outside Diameter): قطر خارجی هم یک پارامتر مهم برای انتخاب لوله است.
3) Thickness: ضخامت که توسط فرمول زیر محاسبه می شود. باید توجه شود که ضخامت مورد استفاده برای انجام پروژه باید بیشتر از ضخامت محاسبه شده باشد.
P: فشار داخلی (internal pressure) :D قطر لوله
:E فاکتور کیفیت، که براساس میزان در زلزله محاسبه می شود که از روی روش ساخت لوله معین می شود. این فاکتور برای لوله بدون درز برابر 1 می باشد.
:S میزان تنش حد تحمل جنس لوله.
:Y عدد ثابتی است که از جدول خاصی از استاندارد که بنا به سیال عبوری و شرایط کارکرد. لوله از جدول خوانده می شود.
M.T (Manufatiuring Telorance): تلرانس سازنده لوله که جزء مشخصات هر لوله ساخته شده توسط شرکت سازنده می باشد.
Allowannces: که یک عدد ثابت است و به دو قسمت تقسیم می شود.
Crossure Allowannces: میزان خوردگی فلز مورد استفاده برای لوله در طی یک مدت مشخص.
Threaded Allowannces: هنگامی لحاظ می شود که لوله دنده می شود و برای جلوگیری از کم شدن مقاومت لوله لحاظ می شود. با قرار دادن مقادیر مطرح شده ضخامت لوله بدست می آید.
Internal Pressure: فشار داخلی لوله که جزء مشخصات فرآیندی طرح است.
External Pressure: فشار خارجی وارد به لوله، مثلاً ممکن است باری از خارج به لوله وارد شود که باید در انتخاب لوله لحاظ شود.
Seam Weld: روش ساخت لوله، از اهمیت بسیاری در انتخاب لوله برخوردار است.
Spiral: که در این روش لوله را به صورت فنری می سازند به هم جوش می دهند.
Long itutudinal: که ورقها را به صورت لوله خم می کنند و دو طرف را به هم جوش می دهند.
SAW-Submerged Are Welded: الکترود ذوب می شود و باعث جوش دو قطعه به هم می شود.
EFW-Electric Fusion Welded: که در این روش قطعه ذوب می شود و باعث جوش می شود.
ERW-Electrie Resistance Welded
FBW-Furnace
7) Joints: روش اتصالات لوله ها به یکی از صورتهای زیر انجام می شود.
Threaded: که دو لوله به وسیله دنده به هم وصل می شوند و به هیچ کاری موسوم است.
:Bult Weld که دو لوله به صورت لب به لب با هم جوش می شوند.
:Socicet Weld که دو لوله به وسیله یک رابطه به نام Foll Copling به هم جوش می شوند.
:Fillet Weld که در اتصال دو لوله عمود بر هم استفاده می شود.
:Flange که برای مواردی خاص استفاده می شود که در ذیل به آن اشاره می شود. سه نوع اتصال اول برای موارد خاصی استفاده می شود که به صورت زیر است.
در سایزهای پایین که تنش حرارتی حاصل از جوش به طرف دیگر لوله می رسد از جوش نوع Socket استفاده می شود. وی برای سایزهای بالا این مشکل را نداریم باید توجه شود. که در Socketweld جوش به عمق لوله نفوف نمی کند. اما در
Butt Weld نفوذ می کند. در Butt Weld دو لوله حتماً باید ضخامت برابری داشته باشند. وی در Socket و Threaded الزامی به هم ضخامت بردن نیست.
از اتصال Threaded در جایی استفاده می کنیم که نتوانیم از جوش استفاده کنیم مثلاً اتصال لوله برنزی به فولاد معمولاً از تا 2 in برای جوش از Socket و از 2in به بالا از Butt استفاده می شود. نکته قابل توجه در این تغییرات این است که معمولاً شرکتهای کره ای اتصال 2in را Socket می کنند وی شرکتهای آمریکایی و ژاپنی از Butt Weld استفاده می کنند.
: Length (8 طول لوله فیزیکی از مواردی است که باید مورد توجه قرار بگیرد. که معمولاً 6m یا 12m هستند برای آسانتر شدن حمل و نقل لوله های زیر 2in، 6متری و لوله های بالای 2in را 12 متری می سازند.
:Marking (9 هر کدام از مشخصات لوله را خواستیم می توانیم به سازنده سفارش دهیم که بر روی لوله حک شود.
:Color Coding (10 ابتدا و انتهای لوله ها برای کاربردهای مختلف را رنگهای مختلف می زنند که استاندارد مورد استفاده رنگ را مشخص می کند.
:Packing (11 دسته بندی لوله های مختلف مثلاً لوله های زیر 2in در دسته های 24 تایر دسته بندی می کنند.
:Test S (12 قسمتهای مختلفی برای لوله وجود دارد. که به چهار صورت انجام میشود.
:PT-Penetratio Test (a که این تست ترکهای سطحی را نشان می دهد. به صورت زیر انجام می شود. ابتدا سطح لوله را با یک اسپری به نام Cleaner تمیز میکنند. سپس اسپری دوم به نام Penet را به سطح لوله می زنند که به رنگ قرمز یا سبز است و از یک ماده نافذ در خلال و خرج لوله تشکیل می شود. سپس اسپری سوم به نام Developer، استفاده می کنند که بعد از این مرحله می توان ترکهای احتمالی روی لوله را مشاهده کرد.
:MT-Magnetic Partical Test (b از دستگاهی که از خاصیت مغناطیسی استفاده می کند برای تست استفاده می شود. ترکهای سطحی را نشان می دهد.
:UT-Ultrasonic Test (c که این قسمت هم ترکهای سطحی را نشان میدهد و از دستگاهی استفاده می شود که موج را انتشار می دهد و اگر به ترک در سطح لوله برخورد کرد، بر می گردد. امواج را به فرکانس در صحنه مانیتور تبدیل می کند.
RT-Radiography Test: که دقیق ترین تست مورد استفاده است و با عکس برداری دقیق از سطح لوله انجام می شود و ترکهای عمقی را نشان می دهد و روش گرانی است.
PWHT (Post Weld Heat Tratment) (13: عملیات حرارتی قبل از جوشکاری که در 2 جا لازم است.
1) موارد مشخص شده در آدرس زیر که مشخص می کند همه جا ضخامت از یک دی بیشتر شود باید عملیات حرارتی داشته باشد.
B31.3 Requirement asper Table 331.1.1
2) Process Requirement: نیازهای فرآیندی مثل اینکه آیا سیال لکه دارد. اگر لکه داشته باشد حتماً باید از عملیات حرارتی پیش از جوشکاری استفاده کرد. و یا اینکه سیال خطرناک است یا نه. و اگر خطرناک بود باید عملیات حرارتی انجام شود.
عملیات حرارتی در یک سایت با استفاده از المنت حرارتی و پیچیدن تپه به دور لوله انجام می شود.
استانداردهای مورد استفاده در لوله برای بخشهای مختلف در ذیل آمده است.
NPS-OD ASME B31.3
Thickness- Internal Pressure- External Pressur
ASME B 36.10 M
ASME B 3619 M
Seamweld APL 5L
Joint ASME B 16.25
ASME B 1.20.1
قلم دیگری که مورد بررسی قرار می گیرد. Fitting ها هستند fitting ها شامل سه دسته کلی هستند.
1) Line Direction Size
2) Line Size Reduction
3) Branches
fitting: اتصالاتی هستند که برای سه منظور بالا به کار می روند. در سه نوع
Butt Weld و Socket Weld و Threaded به لوله متصل می شوند. استفاده از این سه نوع اتصال در موارد زیر صورت می گیرد.
در استاندارد ASME B16.11 مربوط به fitting از سایز تا سایز برای Socket مجازات، در حالی که معمولاً تا را Socket می کنند. اگر سیال بسیار خطرناک باشد حتی اتصالات زیر 2in را هم Butt Weld می کنند و این به خاطر این است که اتصال Socket را نمی توان رادیوگرافی کرد. ولی در Butt Weld می توان از تست رادیوگرافی استفاده کرد. اگر نتوانیم از دو اتصال بالا استفاده کنیم. باید از Threaded استفاده کنیم. رنج استفاده از Butt Weld Fitting به صورت زیر در استاندارد آمده است.
حال به سراغ دسته اول از fitting ها می رویم که برای تغیر مسیر استفاده میشوند.
1) Miter bend: تکه لوله هایی هستند که با زوایایی مختلف به هم جوش می شوند در Miter bend عوامل زیر موثرند.
(A Number of pieces: تعداد تکه های لوله برای ساخت مایتربند.
(B Degree: زاویه انحراف.
(C Radius: شعاع مایتربند که معمولاً به صورت ضریبی از قطر لوله بیان می شود.
(D Allowable working pressure: فشاری که مایتربند تحت آن کار می کند.
شرایط استفاده از Miter bend، فشار پایین، سایز بالا و سیال ساده می باشد. چون اگر برایمثال فشار بالا باشد یا سیال خورنده باشد باعث تمرکز تنش در محل جوش میشود. مزیت استفاده از Miter bend ارزان بودن آن است.
استاندارد مورد استفاده در Miter bend، ASME B31.3 می باشد.
2) ELBOW: زانویی، وسیله ای است که برای تغییر مسیر استفاده می شود. که محدودیت در اندازه شعاع به میزان 1 یا 1/5 برابر قطر دارد. برای تغییر زاویه به استفاده می شود.
یکی از نکاتی که باید در بحث زانویی که باید اشاره شود. این است که معمولاً کمتر از زانویی 180° استفاده می شود. از دو زانویی 180° استفاده می شود. علت این کار بحث خرید اقلام است مثلاً اگر برای انجام پروژه به 3 زانویی 180° نیاز داشته باشیم (زانویی 180° بسیار کم استفاده می شود) باید 5 عدد از این نوع زانویی سفارش دهیم و این به خاطر ملزومات پروژه است که ممکن است اشکالاتی در موقع نصب ایجاد شود. مجبور شویم از یک قلم دیگر استفاده کنیم برای جلوگیری از هزینه اضافی از زانویی 90° که بسیار مورد استفاده قرار می گیرد، استفاده می کنیم.
نکته مجدد مزیت استفاده از زانویی می باشد که می توان آن را در فضا به هر جهت دلخواه چرخانده از این مزیت در متصل کردن خط لوله به تجهیزات استفاده می شود.
استانداردهای زانویی عبارتند از:
BS 3799, ASME B16.28, ASME B16.11, ASME B16.9, MSS SP-75, MSS SP-43.
3) Bend: که از خم کردن لوله بدست می آید، و برای تغییر مسیر خط لوله استفاده می شود. شعاع و زاویه خم در انتخاب Bend نقش دارند.
(A اگر سیال با ویسکوزیته بالا داشته باشیم نمی توان از Elbow استفاده کرد. چون ممکن است سیال در آن گیر کند، و از Bend استفاده می شود.
(B در حالتی که در صورت استفاده از Elbow افت فشار زیاد شود، از زانویی استفاده می شود.
(C برای خطوطی که می خواهیم آنها را پیک رانی کنیم. پیک رانی عبارت است از وارد کردن تکه ای به خط لوله و حرکت قطعه با فشار آب درون خط برای تمیز کردن خط لوله، اگر از زانویی استفاده شود. احتمال گیر کردن قطعه در خط لوله زیاد است.
1) Reducer که برای کوچکتر یا بزرگتر کردن خط لوله مورد استفاده قرار میگیرد. که ممکن است دو سر آن Male یا دو سر آن Female یا یک سر Male و سر دیگر Female باشد. که در انواع زیر تقسیم بندی می شود.
Concentxi Reducer: اگر ردیوسر، دارای مرکز تقارن باشد در این گروه از ردیوسرها قرار می گیرد.
:Eccentric Reducer اگر ردیوسر از مرکز تتاونش نصف شده باشد و مورد استفاده قرار گیرد. در این گروه قرار می گیرد.
:Conical Reducer اگر ردیوسر به صورت مخروطی باشد که ابتدا و انتهای آن یا دو خط صاف به هم وصل شده باشند از این دسته است.
:Knuckle Reducer اگر ردیوسر به صورت مخروطی باشد که ابتدا و انتهای آن با دو خط منحنی شکل به هم وصل شده باشند و اندازه آن به تدریج کم شود. در این دسته قرار می گیرد.
یکی از پارامترهای مهم در انتخاب ردیوسر طول دریوسر می باشد. باید توجه شود که برای تمامی قطرهای ورودی طول ردیوسر یکی است. مثلاً برابر قطر ورودی 10 داریم:
10 * 8 7 in
10 * 6 7 in
10 * 4 7 in
. .
. .
. .
در انتخاب ردیوسر باید مسیری را انتخاب کنیم که دارای طول کمتر و تعداد کمتری ردیوسر باشد. برای دستیابی به هدف بالا باید بلندترین کامها را در انتخاب ردیوسر برداریم مثلاً برای تبدیل لوله 10in و 2in چند راه وجود دارد. که در زیر آمده است اما مناسب ترین آن آخرین راه است چون طول و تعداد کمتری ردیوسر استفاده می شود.
A) 10 * 8 8* 6 6 * 4 4 * 2
B) 10 * 6 6* 4 4 * 2
C) 10 * 4 4 * 2
نکته دیگری که در ردیوسر باید مورد توجه قرار بگیرد. این است که انتهای ردیوسرها Butt Weld و به صورت نری یا مادگی در لوله قرار نمی گیرند که این خود باعث محدودیت می شود. برای جلوگیری از این مشکل قلم دیگری به نام Swage Nipple ساخته شد.
2) Swag Nipple: که برای تغییر سایز خط لوله به کار می رود. و ابتدا و انتهای آن می تواند، تنوع بالایی داشته باشد و به صورت های زیر است. و به صورت نری و مادگی هم در می آید.
TLE, PSE, BLE, PBE, TBE, PLE, TSE
برای مثال TSE مخفف Threaded Socket End TSE می باشد.
یعنی یک طرف آن Threaded و طرف دیگر آن Socket می باشد.
استاندارد مورد استفاده در Reducer، ASME B16.9 می باشد.
استاندارد مورد استفاده در Swage Nipple، MSS SP-95 و BS 3799 می باشد.
3) مهره ماسوره: که این اتصال نیز برای تغییر اندازه خط لوله به کار می رود. در جاهایی استفاده می شود که در بعضی از موارد لازم است. خط لوله از هم جدا شود. کاربرد بالایی دارد.
Branches: دسته سوم از fitting ها برای شاخه گرفتن از خط لوله استفاده میشود. قبل از اینکه به معرفی اقلامی که برای شاخه گرفتن از خط لوله مورد نیازمند باید به این نکته توجه کرد. که آیا می توان از خط لوله شاخه گرفت یا نه.
برای بررسی این موضوع به روش زیر عمل می کنیم.
ابتدا سعی از لوله ای که می خواهیم از آن شاخه بگیریم را محاسبه می کنیم.
سپس مواردی که بابت تقویت دو قطعه می پردازیم به مساحت تبدیل می کنیم، توجه نشود. در محاسبه مساحتی که از لوله اصلی باید بریده شود. نباید مساحتی را که به عنوان MT (تلرانس ساخت) و کروژر الوانس وجود دارند محاسبه شود. بلکه این موارد به عنوان تقویت کننده مورد استفاده قرار می گیرند. همچنین مساحت جوش شده نیز به عنوان تقویت کننده ای می شود.
اگر مساحت بریده شده را A1 و مساحت های تبدیل شده از MT و کروژر الوانس و مساحت جوش را به ترتیب A4,A3,A2 بنامیم اگر شرط زیر برقرار باشد می توان از هدر یا لوله اصلی شاخه گرفت.
A2 + A3 + A4 > A1
باید توجه داشت که برای مثال اگر فشار کاری 10bar باشد. جایی که میخواهیم شاخه بگیریم دارای فشار، 5bar باشد. چون ضخامت لوله براساس 10bar محاسبه شده است می توان این ضخامت را به عنوان تقویت کننده در نظر گرفت حال به معرفی اقلامی که در branch گرفتن مورد استفاده قرار می گیرند، می پردازیم.
1) Tee: سه راهی وسیله ای است برای شاخه گرفتن از هدردر اکثر مواقع شاخه گرفته شده از سه راهی یا هم اندازه هدر است یا نصف اندازه هدر
اگر شاخه با زاویه ای غیر از نسبت به هدر باشد آنگاه Tee را Latral Tee مینامند.
2) Owlets (outlet): اولت وسیله ای است که برای گرفتن انشعاب بعد از سوراخ کردن هدر به هدر وصل می شود. برای سایزهای مختلف انواع مختلف Butt Weld و Threaded و Socket Weld وجود دارد. معمولاً برای گرفتن انشعاب از لوله های با سایز بالا و گرفتن انشعاب برای سایزهای کوچک استفاده می شود.
نکته قابل توجه در استفاده از اولت ها این است که کف اولت ها دارای انحناء است. و اگر سایز لوله خیلی بالا رود. نمی توان از اولت برای گرفتن braNCHE استفاده کرد. چون جایی که اولت قرار است در آن قرار گیرد. تقریباً صاف است و این در حالی است که کف اولت دارای انحناء می باشد. برای حل این مشکل از
half coupling استفاده می کنند که شکل آن همانند یک کوپلینگ نصف شده است.
3) Socolet: که برای شاخه گرفتن از هدرهای با سایز پایین و شاخه های با سایز پایین می باشد.
موارد استفاده این نوع fitting ها در جدول آمده است.
Fitting |
Branche |
Meader |
Socolet |
Y<2 |
2 |
Socket Weld Tee |
Y<2 |
X<2 |
Half Copling |
Y<2 |
x>12 |
Welding Owlet |
|
X |
Tee |
اگر شاخه سه سایز پایین تر از هدر باشد |
X |
در اینجا به معرفی استانداردهای اقلام معرفی شده در بالا می پردازیم:
Tee ASME B16.19 ASME B16.11 1353799
MSS SP-43 MSS SP-75
Owlets MSS SP-97
Half Coupling ASME B16.11, BS 3799
در این قسمت به معرفی انواع شیرهای مورد استفاده در صنعت Piping می پردازیم در کاتالوگ های سازندگان شیر معمولاً موارد زیر را می توان برای قسمت های مختلف یک شیر در نظر گرفت.
1- دیسک و نشیمنگاه (Seat) که مستقیماً در دبی جریان تأثیر دارد.
2- دسته (Stem) که دیسک را حرکت می دهد و در بعضی از شیرها جریان تحت فشار کار Stem را انجام می دهد.
3- بدنه و درپوش (Bonnet) که محل قرارگیری دسته می باشد.
4- اپراتور (Operator) که دسته را حرکت می دد به اپراتور Handweel هم میگویند.
دسته بندی | عمران |
فرمت فایل | doc |
حجم فایل | 21 کیلو بایت |
تعداد صفحات فایل | 53 |
توضیحاتی درباره نویسنده مقاله:
آدام نویل یکی از نویسندگان معتبر در رابطه با فن آوری بتن در سطح بین المللی است. وی دارای مدارک.MSC.PHD و DSC از دانشگاه لندن و همچنین مدرک DSC از دانشگاه لیدز است. در دوران کار حرفه ای بلند و بر جسته اش، او مهندس هیدرو الکتریک و ایستگاههای نیروی هسته ای بوده، و در دانشکده های زیادی به عنوان ریاست گروه مهندس عمران دانشگاه لیدز، عضو هیئت مؤسس مهندسی و تحقیقات فارغ التحصیلی دانشگاه کالگری ( کانادا) و ریاست دانشگاه داندی در اسکاتلند خدمت کرده است. از سال 1987 دکتر نویل مشاور در امور بتن و سازه بوده و تجربیات قابل توجهی نیز به عنوان یک متخصص در ایالات متحده کپ کرده است. وی نویسنده بیش از 250 مقاله فنی و همچنین نه کتاب درباره بتن، تحلیل سازه و مترهای استاتیک بوده است، معروف ترین کتاب او به نام ویژگی های بتن، به سیزده زبان ترجمه شده و بیش از نیم میلیون نسخه از آن در جهان فروخته شده است. آخرین کتاب او ( 2003 ) به نام نویل و بتن- آزمون انواع رفتارهای بتن است.
سوتیتد:
اکثر مقالات درباره بتن روی یکی از خصوصیات آن توجه دارند، بنابر این تصویر مبهمی از اهمیت پارامترهای گوناگون برای رسیدن به یک سازه بتنی خوب، ارائه می دهند. موضوع این مقاله این است که این هدف با بکارگیری رشته ای عملیات یکپارچه قابل دسترس است و هر کدام از این عملیات ها بطور خلاصه بررسی شده اند. موارد ذکر شده عبارتند از سیمان در عصر حاضر، انتخاب مواد اولیه برای مخطوط کردن بتون، استفاده از بیندرها ( ملات) مانند خاکستر بادی و دوده سیلیسی، بتن خود سفت شد و سازه پایدار مقاله حاضر همچنین نگاه هایی به جنبه های خاص بتن پیش ساخته دارد.
متن:
تمام مقالات بتن تنها یک هدف دارند: دستیابی به یک سازه رضایت بخش، یعنی سازه ای که سالم و پایدار باشد. متأسفانه با وجود انتشار هزاران مقالات پژوهشی در سال، در بسیاری از سازه ها، به خوبی که باید باشد نیست. این مقاله قصد دارد تا به توضیح این وضعیت بپردازد.
مقاله حاضر امیدوار است با نشان دادن کم کاری در زمینه ساخت و ساز با بتن بتواند خوانندگان را در پیشبرد راهکارهای مختلف یا حداقل در نگرش دوباره به قصور در بتن کمک کند.
بنابراین از صمیم قلب از هر گونه کلمات و الفاظ تندی که بکار برده ام، پوزش می طلبم. این مقاله یک جنبه خاص دارد که آن را از دیگر مقالات متمایز می کند و به یک موضوع می پردازد و اهمیت آن را نشان می دهد، این مقاله تمام زوایای ساخت بتن را نشان می دهد.
ماهیت مساله
چرا بتن در بسیاری از سازه ها به خوبی که باید باشد نیست؟ اول اینکه یک سری تحقیقات دانشگاهی نامتجانس در شرایط مفید واقعی و روی نمونه های مصنوعی برای پژوهش در آزمایشگاه انجام می شوند و از طرفی این آزمایش ها توسط افرادی بعمل می آیند که هیچ تجربه ای از شرایط واقعی در زندگی ندارند. در تجربیات آنها، رشته متغیرها بسیار محدود است شرایط آسیب رسان بطور غیر واقعانه ای مبانعه می شوند تا رسیدن نتیجه سرعت داشته باشند، از تغییر شکل در بتن بر اثر انقباض یا دم هم با استفاده از نمونه های کوچک و دیگر محدویت های ساختگی جلوگیری می شود. بیشتر دانشگاهیان علاقه ای به تحقیق و بررسی در یک پروژه واقعی ندارند و ترجیح می دهند در یک آزمایشگاه با تهویه هوای عالی بمانند و چکمه و کلاه ایمنی بپوشند.
دوم اینکه دانشجویان دوره لیسانس مهندسی عمران کمتر چیزی در باره بتن به عنوان یکی از مصالح یاد گرفته اند. بنابر این وقتی پس از فارغ التحصیلی و شروع به کار با مهاسبات طراحی بخصوص محاسبه به حالت کامپیوتری درگیر می شوند. کمیت های ثابتی برای خصوصیات بتن در نظر می گیرند. کمیت هایی چون ضریب ارتجاعی، جمع شدگی بتن در اثر از دست دادن آب، ضریب خزش، انبساط حرارتی و دیگر کمیت ها، آنها به ندرت از خود درباره اینکه آیا یک مخلوط واقعی با کمیت های در نظر گرفته شده با محاسبات طراحی مطابقت دارند یا خیر، سئوال می کنند. در واقع کمتر کسی به اینطور سازگاری ها توجه دارد.
سوم اینکه رویهمرفته، نیروی کار در تولید بتن که شامل پیمانه کردن، مخلوط کردن، حمل و نقل، بتن ریزی، متراکم کردن، پرداخت و پروراندن بتن است، از نیروهای کار در دیگر زمینه ها از قبیل چوبکاری، نجاری، کارهای الکتریکی، لوله کشی یا حتی آجر چینی، تحصیلات و دوره های آموزش کمتری دارند.
منظورم این نیست که همه بتن کارها بی کفایت هستند. هر قدم در تولید بتن می تواند در محصول نهایی تأ ثیر مستقیم بگذارد. بنابر این بسیاری از سازه های بتنی کامل نیستند و به همین خاطر مدت اندکی پس از تکمیل سازه احتیاج به تعمیر و باز سازی پیدا می کنند.
شاید استباه کوچکی در کار باشد. کیفیت کار نه تنها به شایستگی نیروی کار، بلکه به کیفیت و وقت در نظارت نیز بستگی دارد. وقتی جوان بودم، مهندس ناظری سراغ داشتم که اغلب تمام وقت کار می کرد و با چشمان تیز بین که داشت جلوی هرگونه شلختگی و ناهماهنگی در کار را می گرفت. چنین نظارتی گران بود. اما قیمت هایی کارفرما به قدری بود که هزینه ها را پوشش دهد. رقابت شدید در پروژه های طراحی به همراه نسخ قیمت های مصوب، باعث کاهش قیمت ها شد و اولین قدم در صرفه جویی مالی، صرفه جویی در نظارت بود.
پروسه بی عیب ونقص
موضوع تمام گله و شکایت من این است که دستیابی به یک بتن خوب باید یک پروسه بی عیب و نقص باشد. گاهی اوقات ایراد در کار دیده می شود، گاهی هم مخفی است و کسی از آن چیزی نمی داند تا اینکه اتفاقی بیافتد و تحقیقات پس از آن شروع شود.
در زمینه بتن های تقویت شده و پیش تنیده، معلوم کردن اینکه درون هر قطعه چطور است مشکل می باشد بخصوص پس از گذشت زمان، درساده ترین نوع یک بزرگراه یا یک پیاده رو، به ندرت ضخامت بتن کنترل می شود، یا اینکه اخیراً روشهای الکترونیکی نوینی برای این کار در دست است. سیستم های قدیمی مغزه هی مخرب هستند.
باز بینی درجه تراکم و میزان کمبود بافت کندویی یا حفره های ریز هوا رایج نیستند، فقط بخاطر اینکه آسان نبوده و وقت گیر هستند. با اطمینان از اندازه صحیح میلگردها، می توان پی به وضعیت میلگردهای تقویتی برد. اما پس از آن هم الزاماً مطمئن نیستیم که فولاد مناسب استفاده شده است یا خیر. موقعیتی را سراغ داشتم که در آن کد گذاری فولاد بوسیله رنگ ها اشتباه شده بود و در نتیجه از شماره فولاد اشتباه استفاده شده بود.
بتن با تکنیک ضعیف
بتن یکی از آن مصالح عجیب و غریب است که هم تکنیک بالای آن هست و هم تکنیک پائین آن، این مثل یک تضاد است چون بتن از ساده ترین مصالح است و یک فرد خیابانی هم بدون داشتن کمترین دانش فنی می تواند آن را درست کند. بتن مصالحی است که انتظار می رود خصوصیات منحصر بفرد خود را داشته باشد. این یک پیشرفت است که در زمان زندگی من اتفاق افتاده است و چنین پیشرفتی الزاماً نمی تواند نتیجه معکوس داشته باشد مثلاً با تغییر ماشین آلات کمتر از یک قرن پیش این ماشین ها هستند اما به اندازه وزنشان به قیمت طلا می ارزند. همه ساله صدها میلیون ماشین وارد بازار می شوند که بصورت خارق العاده ای توسط ابزار الکترونیکی کنترل شده و با روباتهای کوچک و بزرگ اجرای کار می کنند.
البته ما هنوز در موقعیت مدرنی نیستیم که سیستم فقط شامل یک انسان و یک سگ باشد. چرا سگ؟ چونکه به انسان اجازه دخالت در کار ماشین را ندهد. و چرا یک انسان؟ چون به سگ غذا دهد.
اجازه دهید تا تغییرات در بتن را با دقت شرح دهم. روزهایی را به یاد دارم که بتن با قوطی های 1 فوتی پیمانه می شدند و این قوطی ها با شن یا قلوه سنگ یا سیمان پر می شدند. در واقع یک کیسه 5/42 کیلویی حدود 028/0 متر مکعب سیمان داشت. در یک کار کوچک، پیمانه کردن با یک بیل انجام می شد: کمی سیمان، کمی شن و کمی قلوه سنگ. اصل و مبدإ مخلوطهای 1:2:4 یا 3: 5/1 :1 همین روش است.
این مصالح احتیاج به شن تمیز وگرد، و قلوه سنگ های ریز که از نزدیک ترین رودخانه تهیه می شوند، داشتند. در صورت امکان جدا سازی قلوه سنگ های بزرگ از کوچک بسیار خوب بود. آب نیز برای تولید مخلوطی که تراکم را ساده کند اضافه می شد.
نکته قابل توجه این است که این نسبت 5/0 آب - سیمان نسبت خوب و مناسبی بود و بطور قابل ملاحظه ای بتن خوبی از آب در می آمد. بعضی قطعات مانند دیوارها، کف ها وحتی تیرهای پل ها تا امروز باقی مانده اند.
به نسبت آب - سیمان (w/c ) اشاره کردم. این موضوع در دهه دوم قرن بیستم توسط آبراند در ایلات متحده و فرت در فرانسه گسترش یافت، اما این نسبت یک پارامتر کار بردی نبود. در واقع به نظر من امروز نسبت w/c نمی تواند یک پارامتر ابتدایی به شمار آید. این حرفها شاید من را مورد لعنت و استهزاء همه قرار دهد ولی در قسمتهای بعدی دلایلم را ارائه خواهم داد.
تمام اینها در باره سیمان با تکنیک پایین بود. با اینکه امروزه بتن را بصورت فله پیمانه نمی کنیم اما برای مقاصد زیادی از این طریق بتن رضایت بخش تولید می شود. من این بتن را بتن با تکنیک پایین نام گذاری کرده ام.
بتن با تکنیک بالا
حال از بتن با تکنیک بالا انتظار می رود تا ویژیگیهای مخصوص لازم برای کاربردهای مختلف را داشته باشد. این ویژگی ها عبارتند از: حداقل مقاومت منشاری در بتن با سن کم، ضریب انبساط حرارتی ویژه نرخ پایین تولید حرارت ( مربوط به هیدراسیون سیمان که دمای کنترل شده ایجاد می کند). ضریب ارتجاعی خاص، ویژگیهای خزش خاص یا بزرگی انقباص محدود تحت شرایط آزمایشگاهی. سه ویژگی مهم اخیر مربوط به بتن پیش تنیده هستند. لیست فوق را می توان برای ضریب خاصی چون یخ زدن و ذوب شدن و همچنین برای مقاومت در برابر حمله عوامل خارجی تعمیم داد.
تمام فاکتورهای فوق قابل دسترس هستند چرا که درسالهای میانی قرن بیستم کارهای علمی زیادی صورت گرفت که بیشتر آنها در ایالات متحده انجام شدند و این آزمایش ها زمینه درک بهتری از ویژگی های فیزیکی و شیمیایی سیمان پر تلند وبتنی که از این سیمان در آن استفاده شده است را دارند. در نتیجه، ما قادر بودیم ویژگی هایی برای سیمان پر تلند وضع کنیم. بعداً درباره الزامات لازم برای شن و ماسه صحبت خواهم کرد.
ویژگی های دقیق سیمان
اینجا به یک مشکل پایه ای برخورد می کنیم می دانیم که سیمان پر تلند مورد نیاز ما باید
C3S ،C2S وC3A و مرغوبیت داشته باشد، اما ما می توانیم چنین سیمانی بخریم ! یا بهتر بگویم وقتی سیمان می خریم می دانیم چه چیزی خریده ایم؟ پاسخ منفی است، و این اولین تضاد بین انتظارات از سیمان با تکنیک بالا و واقعیت است.
شاید بعضی از خوانندگان از ادعای بالا تعجب کرده و با خود بگویند که سیمان پر تلند دسته بندی ASTM از 1 تا 4 دارد و همچنیم یک دسته بندی اروپایی دوازده نوع سیمان پرتلند دارد.
البته این درست است اما دسته بندی های استاندارد بیش از این گسترده هستند به عنوان مثال الذامات ترکیبات ASTMC-SO-O4 عبارتند از: Sio2 ،Al2o3 ،Fe2o3 وMgo ، که این ترکیب هم در سیمان درجه 1 و هم در سیمان درجه III رعایت می شود. و همچنین دو سیمان
1- انجمن آزمایش و مصالح امریکا - مترجمه
درجه III می تواند تفاوت های فاحشی با هم داشته باشد. علاوه بر این یک سیمان درجه 1 خاص شاید C3S بیشتر از یک سیمان درجه III داشته باشد. نباید تعجب کرد وقتی که دو بتن از یک سیمان درجه III ساخته شده باشند و در آخر با هم تفاوت زیادی پیدا کنند.( سیمان درجه III اغلب در صنعت بتن پیش ساخته استفاده می شود).
ادعای من می تواند با اشاره به اینکه می توانیم ویژگی های سیمانی که خریداری می کنیم. را سفارش سیمان با ویژگی های جواب داده شود. اول از همه اینکه معلوم کردن نوع سیمان به منزله سرهای وزنی و بزرگراههای عظیم محقق شود. در واقع سیمان مثل سیمان ASTM e183-o2 ، به گفته مؤسسه استاندارد و نمونه برداری سیمان آبی، هرگز به خوبی فروش نرفته است
دوم اینکه وقتی از تولید کننده سیمان درباره لیست تأیید شده ای از خصوصیات سیمان مورد معامله، سئوال می کنیم، این گواهی به هیچ عنوان با سیمانی که به سایت یا پروژه ها آورده می شود، مطابقت ندارد. علاوه بر این اصلاً معلوم نیست که سیمان در چه روزی تولید شده و به کدام سیلو متعلق است. در کل چیزی جز یک نظر کلی در باره ویژگی های سیمان مورد نظر نخواهیم داشت.
تمام موارد ذکر شده در فوق انتقاد از روش های موجود تولید وتأمین سیمان پر تلند نیست، بلکه بازتاب حقیقی است که می گوید سیمان یک مصالح ارزان قیمت است و هرگونه دقت در تولید بهتر آن به گرانی محصول منجر خواهد شد. علاوه براین، سیمان تولید شده در یک کارخانه شدیداً تحت تأیید مواد خام اولیه و حتی سوختی است که در کوره استفاده شده است. سوخت همانقدر مهم است که سولفات درکلینکر سیمان، چون قابلیت حل سولفاتها، سازگاری سیمان با روان کننده ها را تحت تأثیر قرار می دهد.
مشکلات مربوط به سیمان
تاکنون من در مورد محدودیت ویژگی های دقیق سیمان پر تلندی که به شخص تحمیل می شود تا مخلوط بتن خود را تهیه کند، صحبت کرده ام. امروزه، سیمان پر تلند کمتر به عنوانیک ملات استفاده می شود بلکه این سیمان از اجزای لازمه ملات است. دلایل زیادی دارم، از جمله: اول اینکه، با استفاده از ملات های افزودنی که از مصالح سیمانی هستند، ویژگی های مصالح سیمانی ترکیب شده بسیار با هم متفاوت خواهند بود. ما قادریم تا نرخ پیشرفت گرمای هیدراسیون و افزایش دمای بتن را پایین بیاوریم و در نتیجه را در برابر بعضی حملات شمیایی کاهش دهیم.
دوم اینکه، بسیاری از مصالح سیمانی افزودنی یا طبیعی هستند یا در پروسه تولید دیگر مصالح بدست می آیند ( مانند روبارة آهن گدازی، که در تولید آهن حاصل می شود) و یا از محصولات هرز هستند ( مانند زمه خاکستر که در سوختن زغال سنگ در نیرو گاه بدست می آید). بنابراین این مصالح در طبیعت وجود دارند و لازم نیست که حتماً تولید شوند، و مقادیر زیادی از انرژی را اتلاف کنند. این صرفه جویی در انرژی است که درنهایت منجر به سود اقتصادی می شود. از طرفی مصرف نرمه خاکستر مشکلات زیست محیطی بوجود می آورد.
سوم اینکه، شاید اینطور تلقی شود که این مصالح دور ریختنی باید ارزانتر از سیمان تولید شده باشند، اما اغلب اینطور نیست.
نرمه خاکستر
نرمه خاکستر شاید شایع ترین ملاتی باشد که به سیمان پرتلند اضافه می شود. از لفظ اضافه شدن استفاده می کنم چون باید نسبت مشخصی از سیمان پرتلند را در ملات استفاده کنیم، زیرا عمل هیدرو لیک نرمه خاکستر از وانش با هیدرو کسید کلسیم تولید شده در هیدراسیون سیمان پر تلند، نشأت می گیرد.
پیش کسوت استفاده از نرمه خاکستر V.M.Maihotra در کانادا است. او از روشی استفاده می کند که درآن 60 درصد ملات، نرمه خاکستر است. بنابر این روش است که نرمه خاکستر از عناصر اصلی ملات است.
در نیرو گا ههای تولید انرژی با سوخت زغال سنگ، نرمه خاکستر بصورت ذرات منتشر شوند. الکترو ستاتیکی وجود دارد. درصنعت شیشه سازی بصورت عمده بعنوان ترکیبات سیلیسی استفاده می شود و همانطور که در بالا گفته شد با هیدرو کسید کلسیم واکنش می دهد. به عبارت دیگر، نرمه خاکستر یک پوزولان است. اهمیت دیگر نرمه خاکستر، عمل فیزیکی آن در مخلوط بتن است. خرده های نرمه خاکستر عمدتاً کروی بوده و قطری بین 1 تا 100 میکرو متر دارند. آنهایی که قطر خاکستر آتش فشانی که افزودن آن به سیمان پر تلند باعث بهبود خواص بتن و ملات و افزایش مقاومت آنها در برابر تهاجم شیمیایی می شود - مترجم
کمتر 45 میکرو متر دارند، بهتر هستند. خرده های ریزتر کار بسته بندی را راحت تر می کنند. آنها همچنین جمع شدن دانه های سیمان پر تلند دریک جا را کاهش می دهند، بنابراین آب هم در داخل سیمان گیر نمی کند. در نتیجه، نرمه خاکستر به عنوان یک نوع تقلیل دهنده آب عمل می کند.
اینها فواید فنی استفاده از نرمه خاکستر در بتن بودند. نرمه خاکستر همچنین فواید زیست محیطی نیز دارد. اگر از آن دربتن استفاده نشود، پس باید دور ریخته شود و سپس از آن در تولید سیمان پر تلند استفاده خواهد شد که انرژی زیادی را تلف و گاز دی اکسید کربن فراوانی را منتشر خواهد ساخت.
از منظر اقتصادی صحبت های قلبی شاید ما را متوقع کند تا نرمه خاکستر بصورت مجانی عرضه شود. در حقیقت، زمانیکه یک مهندس جوان بودم، اینطور بود. تنها کاری که باید می کردید این بود که یک کامیون می فرستادید تا نیرو گاه مجانی آن را برا یتان پر می کرد. امروزه هر تن خاکستر نرم شاید گرانتر از سیمان پر تلناد تمام شود، البته منظورم خاکستر نرم خوب است.
خوب به این معنی که دانه های آن کاملاً کروی و نسبتاً کوچک باشند، کربن موجود درآن بطور قابل قبولی کم باشد و اینکه ویژگی های آن روز به روز تغییر نکند. برای دستیابی به این فاکتورها نیروگاه باید تمام مواد را از یک منبع تهیه کند و دما را بالا و ثابت نگه داردو برای این منظور نیز، نیروگاه باید خود به یک شبکه انرژی قوی متصل باشد.
انتشار دمای بالا، نتیجه انتشار گازهای NOx است. به همین دلیل، در ده سال اخیر، قوانین سلامتی در هلند و چند کشور دیگر نیرو گاهها را مجبور کرده اند تا انتشار دمای بالا را با افزایش مقدار کربن درنرمه خاکستر و کاهش دانه های گرد، کمتر کنند . آینده چطور خواهد شد نمی دانم!
در این خلال، برای نرمه خاکستر با کیفیت پول خوبی می دهند. بتنی که از این نرمه خاکستر داشته باشد. انقباص کمتری دارد، نفوذ پذیری کمتری دارد، پس مقاومت بهتری دارد، نرخ نفوذ دما در آن کمتر است بهتر پمپاژ می شود و پرداخت نهایی خوبی دارد. پس از دو یا سه ساعت نرمه خاکستر ، رنگ بتن را تیره تر می کند. تأ ثیرات نرمه خاکستر بر انقباض و گسترش مقاومت شدیداً به نوع بتن پیش ساخته/ پیش تنیده بستگی دارد.
جنبه دیگری از استفاده نرمه خاکستر در بتن وجود دارد. در این کار نرمه خاکستر باید خوب و ( نگاه) با آب پرورانده شود. این کار در پرسنه ایجاد نظم و انضباط می کند. به نظر من پروراندن بتن با آب در تمام انواع بتن مهم است و استفاده از نرمه خاکستر بسیار مفید است. پیمانکاری که سر یک کار از نرمه خاکستر استفاده می کند در تمام کارهای بعد شن از نرمه خاکستر استفاده کرده و بتن را خوب با آب می پروراند.
نرمه خاکستر در کشورهای زیادی استفاده می شود. من اهمیت نرمه خاکستر را در مخلوطی که در این مقاله درباره آن صحبت خواهیم کرد، می دانم نرمه خاکستر و گرانول روباره های آهن گدازی برای تولید بتن تحت فشار 28 روزه بالغ بر 110 مگاپاسکال استفاده می شوند.
مخلوط های سه تایی
ملات های شامل سه یا بیش از سه عنصر سیمانی روز به روز رایج تر می شوند. در این مقاله، صحبتم را به استفاده از دوده سیلیسی به همراه نرمه خاکستر و سیمان پر تلند محدود خواهم کرد.
قابل توجه است که دوده سیلیسی هم یک محصول دور ریختنی است. این محصول، ذرات منتشر شده حین تولید سیلیکون و فرو سیلیکون از سنگ کوارتر و زغال سنگ با درجه خلوص بالا در یک کوره الکتریکی است. دوده سیلیسی به آب زیادی احتیاج دارد. در واقع عموماً وجود دوده سیلیسی در مخلوط بتن احتیاج به روان سازها را در پی خواهد داشت. این کارها گران تمام می شوند، اما یک مخلوط سه تایی با یک روان ساز چیزی است که تولید بتن با کار آیی بالا را امکان پذیر می کند. این یک بتن با تکنیک بالا است و این چیزی است که من در آینده می بینیم.
بتن با تکنیک بالا تنها احتیاج به مقاومت زیادی دارد، بلکه برای رسیدن به یک مقاومت خیلی زیاد، نظارت با تکنیک بالا لازم است. این امر در یک کارخانه بتن پیش ساخته خیلی آسان تر از یک پروژه ساخت و ساز است. قطعات پل با مقاومت 110 مگاپاسکال یا حتی 120 مگاپاسکال در فرانسه و ایالات متحده به راحتی ساخته می شوند.
چنین بتنی با مقاومت بالا و نسبت آب - سیمان پایین، باید در اولین ساخت با دقت با آب پرورانده شود، وگرنه در داخل بتن ترک های خطرناکی بر اثر انقباض خود به خود به وجود خواهد آمد. باز هم این کار در یک کارخانه بتن پیش ساخته ممکن می شود.
دسته بندی | عمران |
فرمت فایل | doc |
حجم فایل | 33 کیلو بایت |
تعداد صفحات فایل | 18 |
طراحی بتن :
تعیین مقادیر اجزاء بتن در یک متر مکعب
بتن شن + ماسه+ سیمان+ آب+ افزودنی
مصالح سنگی حجم بتن
خواص سنگها:
1- مقاومت فشاری مناسب
2- مقاومت ضربهای مناسب
3- شکل هندسی مناسب
4- جنس مناسب
مقاومت فشار سنگ نباید از مقاومت فشاری بتن کمتر باشد
مقاومت فشاری سنگ دانهها نباید از مقاومت فشاری بتن خیلی بیشتر باشد.
بررسی علت اینکه چرا نباید مقاومت فشاری سنگ دانهها خیلی بیشتر از بتن باشد.
مقاومت بهتر 600 مقاومت سنگ دانه مقاومت بتن 400
اگر مقاومت سنگ دانهها کمتر باشد تا بخواهد به مقاومت نهایی بتن برسد سنگدانه خرد میشود و از کل مقاومت کاسته میشود
اگر مقاومت سنگ دانه خیلی زیاد باشد تمرکز تنش ایجاد کرده و سنگ دانه مثل سوزن عمل کرده و دروز مصالح پر کننده ، سیمان و ماسه و غیره فرو میرود.
درصد خرد شدگی بتن و سنگ دانه را بررسی میکنند با تحت فشار قرار دادن آن در ظرف استوانهای تا مقاومت فشاری سنگ دانه را بدست آورند.
مقاومت ضربهای را مثل درصد خردشدگی مقاومت فشاری بدست میآوریم با دستگاه دیگری
شکل هندسی: شکل هندسی سنگ دانهها نباید پولکی یا سوزنی باشد.
سنگ دانههایی که در تمام جهان شکسته شده باشند از معادن کوهی بدست میآیند که به آن معادن وادیزی کوهی گویند.
اگر سنگ دانهها گرد گوشه باشند از بستر رودخانه استخراج شدهاند.
جنس سنگ: سنگها آهکی، سیلیسی، کوارتزیت، گرانیتی
از نظر جنس ، سنگهای رودخانه ایی متنوع ترند و سطوح صاف
سنگدانههای متفاوت از نظر جنس دارای مقاومتهای حداقل یا حداکثر متفاوتی دارند ولی سنگدانه های وایزهکوهی از نظر جنس اکثراً مثل هم میباشند.
سنگ دانههای واریزه کوهی به علت شکستگی سطوح بین آنها قفل و بست بهتری میتوان ایجاد کرد پس مادة چسبانندة کمتری نیاز میباشد (سیمان)
سطح سنگدانه های واریزه کوهی زبرتر میباشد تا سنگ دانه های رودخانهایی واریزه کوهی رودخانهایی جنس سنگهای (کوارتزیت) بسیار متناسب است (سیلیسی) خلوص به زیاد قیچی کردن سنگ دانهها (قلوه سنگها) بهتر از خرد کردن یا له کردن آنها تحت فشار است
(نیرو به یک بعد وارد میشود)
(نیرو به بعد وارد میشود و درون سنگ دانهها ترک میخورد)
باید قلوه سنگهای استخراجی توسط دستگاههای خاص قیچی شوند توسط دو فک با ضربة آنی.
بتن = شن+ ماسه+ سیمان+ آب+ افزودنیها
مصالح سنگی
ماسه: باید دانهبندی مناسب داشته باشد و دو ماسه باید SE مناسب داشته باشد.
تعریف دانهبندی: از سایزهای مختلف به میزان متناسب یعنی داخل محدودة ASTM باشد. یعنی وزن رد شده از هر الک تقریباً با هم برابر باشد.
با دارا بودن دانه های مختلف و متناسب در جهت تراکم بتن قائم به داشتهایم.
نبودن این تناسب باعث بوجود آمدن حد و خرج میشود اگر این روزنه های کوچک با سیمان پر شود باعث بالا رفتن هزینه میشود علاوه به این باعث جمع شدگی و خزش میشود.
ماسه مصرفی ما باید SE مناسب داشته باشد یعنی ماسه را در داخل لولهی آزمایش ریخته به همراه مایع استوکس بعد هم می زنیم (تکان میدهیم) البته با دستگاه که باعث حمل شدن ماسه داخل مایع میشود و باعث جدایی ماسه خالص از ذرات ریز معلق (گل) میشود ارتفاع ماسه خالص را به ارتفاع ماسه اولیه قبل از حل شدن را SE ماسه گویند.
SE=%70-%75%100 مناسب
خلوص %100 ماسه هم زیاد مناسب نیست چون چسبندگی زیاد را به ما نمیدهد.
SE مناسب بین 90 تا %95 است. چون این %5 باعث پر کردن خلل و فرج داخل بتن میشود. (شن و ماسه چون خیلی متغیر هستند پس شناخت آنها در ساخت بتن خیلی مؤثر است.)
سیمان:
برای ساخت یک بتن معمولی از سیمان پرتلند تیپ I و II استفاده میشود.
سیمان جامد با جذب آب به سیمان ژله مانند تبدیل میشود که این مرحله را هیدراتاسیون سیمان گویند
گرما + ژل سیمان هیدراتاسیون سیمان
سیمان تیپ II گرمای کمتری نسبت به I دارد .
سیمان تیپ III زودگیر است یعنی گرمای هیدراتاسیون زیاد است سیمان تیپ TV دیرگیر است.
تکنولوژی بتن
مثل دو نکته خیلی مهم در مورد شنها دارا بودن مقاومت فشاری مناسب و نیز دارای شکل هندسی گوشهدار باشد تا گیرش آن بهتر شود.
ماسه دو نکته مهم ماسه دانه بندی مناسب SE (میزان گل و لای)
سیمان سیمان های پوزولانی:
محصول هیدراسیون ژل + گرما میباشد.
گرما+ 56 هیدراسیون
کاربرد و اهمیت سیمان پوزولانی
وقتی بتنریزی ما حجم زیادی دارد.
شناخت گرمای ازاد شده توسط سیمان نقش اساسی دارد.
در سیمانهای پوزولانی روند آزاد کردن گرمای سیمان کند است. وجود حرارت زیاد
در بتنریزی حجم باعث وجود تنشهای حرارتی میشود (فشار درونی)
تنشهای حرارتی باعث ترک خوردن یا رگه خوردن بتن میشود. و باعث پائین آمدن مقاومت فشاری بتن میشود.
در مدت زمان طولانی مقاومت سیمانهای پوزولانی بالاتر است. چون سیمان پوزولانی در مدت زمان بیشتری به مقاومت نهایی میرسد پس برای استفاده در سازههای ساختمانی توصیه نمیشود.
(چون اجرای سریع را داریم)
آب میزان آب بکار رفته در بتن خیلی مهم و اساسی است. اگر ما تمام موارد را اعم از درشت دانه و ریز دانه و افزودنی و نوع سیمان بکار رفته در بتن را رعایت کنیم با استفادة آب نامناسب (دارای ناخالصی) همة موارد رعایت شده بیاهمیت میشود.
اگر ما به اندازة %25 وزن سیمان آب مصرف کنیم تمام دانههای سیمان ما هیدراته میشود. علاوه بر این مقدار آب به مقدار دیگر نیز استفاده میشود تا صرف روانکاری بتن میشود.
هر چه مقدار آب بتن زیاد باشد این آب باید از بتن خارج شود که در هنگام خارج شدن تشکیل لولههای مؤئینه شکل میدهند. که وجود این لولهها باعث اسفنجی شدن بتن میشود.
بتن قالب بندی شده را در آب به مدت 28 روز میگذارند تا %25 آب جذب شده توسط سیمان را از دست ندهیم.
با از دست دادن آب سیمان، سیمان تبدیل به ماسه میشود پس هزینهی اضافی را متقبل شدیم در اصطلاح میگویند سیمان سوخته است افزودنی هایی نیز در بازار موجود است که روی ستونها می پاشند تا مانع از خارج شدن آب از ستون بتنی شود.
بتن = شن + ماسه + سیمان + آب + افزودنیها
باند: سیمان + آب+ ماسه+ هوا + افزودنی +
باند فضای بین دو دانهی سنگین میباشد.
اگر بتن ما مرغوب باشد شکست از ناحیهی سنگدانه صورت میگیرد از ناحیه باند.
اگر ما عملیات ویبره در بتن را مدت زمان زیاد انجام دهیم. سطح بتن (مخلوط) ناهمگن میشود.
بنابراین زمانی که ویبره انجام میشود حباب هوای دفع شده از بتن نباید میزان زمان ویبره طولانی باشد و باید میزان هوا در بتن وجود داشته باشد.
هر چه میزان سنگ در بتن بالاتر باشد مقاومت بیشتر و کارایی کمتر است.
اگر میزان بزرگی دانة سنگی ما درشت تر باشد میزان استفادة ما از سیمان کمتر خواهد شد و اقتصادیتر است.
هر چه فاصلة بین دو سنگ دانه (شن) در متن بیشتر باشد مقاومت بتن کم میشود زیرا فاصلة بین سنگ دانه (باند) زیاد است و باید مقاومت در برابر فشار بیشتر را ندارد.
معدنی
افزودنیها
شیمیایی روان کننده ها و فوق روان کنندهها
اگر در بتن ما میزان آب استفاده شده کم باشد بین سنگدانهها اصطکاکی بوجود میآید و کارایی ما پائین میآید.
مکانیزم افزودنیها بدین گونه است که بین دو دانهی بتن یونهای منفی ایجاد کرده و باعث میشود با حداقل فاصله نسبت به هم قرار گیرند و باعث بالا رفتن کارایی بتن میشود.
افزودنیها را از پساب کارخانجات کاغذسازی بدست میآید که به صورت پودر است.
روان کننده A750 Plastisiter
BV40
فوق روان کننده NN 520 Plastisiter
FF PGE
103 M20
تأثیر منفی افزودنیها میتواند از زیاد استفاده کرده آنها باشد. بدین صورت که بعضی از بتنها دیرگیر هستند و بعضی زودگیر و بعد از مدتی این یونهای منفی از بین میروند.
حال اگر مقدار این بارهای منفی زیاد باشد مقداری از این بارها جذب سنگ دانه نمیشود و بر روی سنگ دانه باقی میماند.
حداکثر استفاده از افزودنیها به صورت مجاد در روانکننده %1 و در فوق روان کننده %3 میتوان استفاده کرد. و این باعث میشود که فوق روان کنندهها ترجیح داده شود.
زیرا مقدار آب کمتری در بتن استفاده میشود.
روان کنندهها را کمتر از فوق روان کننده استفاده کنیم از نظر اقتصادی فرقی ندارد.
اگر افزودنیها بیشتر از حد معمول استفاده شود بتن ما دارای هوا (حباب) خواهد شد که با ویبره کردن هم نیز از بین نمیرود.