فایل بای | FileBuy

مرجع خرید و دانلود گزارش کار آموزی ، گزارشکار آزمایشگاه ، مقاله ، تحقیق ، پروژه و پایان نامه های کلیه رشته های دانشگاهی

فایل بای | FileBuy

مرجع خرید و دانلود گزارش کار آموزی ، گزارشکار آزمایشگاه ، مقاله ، تحقیق ، پروژه و پایان نامه های کلیه رشته های دانشگاهی

بررسی عملکرد قدرت الکتریکی در توزیع و انتقال برق

مخابره و انتقال اطلاعات با بهر گیری از خطوط برق اعم از خطوط انتقال یا توزیع و نیز سیم کشی برق داخلی منازل را تحت عنوان مخابرات با حامل خط برق1 قدرت الکتریکی می شناسیم امروزه با گسترش و تنوع محصولات الکتریکی و الکترونیکی و استفاده از شبکه های مخابراتی در ادارات همچنین در منازل، نیاز روز افزونی به ایجاد شبکه های مبتنی بر تکنیک های قابل اطمینان و
دسته بندی برق
فرمت فایل doc
حجم فایل 529 کیلو بایت
تعداد صفحات فایل 40
بررسی عملکرد قدرت الکتریکی در توزیع و انتقال برق

فروشنده فایل

کد کاربری 8044

١-١- اهداف پروژه

مخابره و انتقال اطلاعات با بهر گیری از خطوط برق اعم از خطوط انتقال یا توزیع و نیز سیم کشی برق داخلی منازل را تحت عنوان مخابرات با حامل خط برق[1] قدرت الکتریکی می شناسیم.

امروزه با گسترش و تنوع محصولات الکتریکی و الکترونیکی و استفاده از شبکه های مخابراتی در ادارات همچنین در منازل، نیاز روز افزونی به ایجاد شبکه های مبتنی بر تکنیک های قابل اطمینان و همراه با پیاده‌سازی آسان و کم هزینه احساس می شود.

تکنیک مخابرة از طریق خطوط قدرت الکتریکی بنابر امکان پیاده سازی بر خطوط و کانالهای آماده و به ویژه در ساختمان های پیش ساخته یکی از گزینه های موثر و اقتصادی در ایجاد شبکه های مخابراتی به نظر می رسد.

بر این اساس قصد داریم که به بررسی پیاده سازی بر خطوط و کانالهای آماده و به ویژه در ساختمان‌های پیش ساخته یکی از گزینه های موثر و اقتصادی در ایجاد شبکه های مخابراتی به نظر می رسد.

بر این اساس قصد داریم به بررسی پیاده سازی این روش جهت ایجاد اتوماسیون داخلی منازل بپردازیم . و در این راستا چالشهای پیش رو روشهای مورد استفاده در پیشگیری و رفع این موانع را مورد مطالعه قرار دهیم .

این پروژه به طور ویژه قصد دارد به همراه ساخت ابزار فرستنده و گیرنده با بهره گیری از میکروکنترل‌های خانواده PIC به ارزیابی پروتکل مخابراتی X10 که به منظور استفاده در شبکه های داخلی منازل طراحی شده است بپردازد.

بر اساس این هدف، تحقق موارد زیر انتظار است:

١-مطالعه خطوط قدرت الکتریکی به عنوان یک کانال انتقال و روشهای اتصال و انتقال از طریق آن

٢-ارزیابی پروتکل مخابراتی X10 و رصد نمودن چالشها و کاستی های احتمالی این شیوه در جهت دستیابی به شبکة‌ قابل اطمینان، همچنین مطالعة روش های قابل ارائه جهت رفع این نواقص

٣-طراحی و ساخت ما ژول های فرستنده و گیرندة مبتنی بر روش فوق.

١-٢- سیستم های PLC داخلی منازل

برقراری ارتباط از طریق خطوط برق شیوة مفید و معمولی برای استفادة داخل منازل
می باشد.

از این رو برخی از شیوه های ارتباطی اعم از پروتکل های ارسال و دریافت داده که به نسبت ساده تر هستند برای استفاده در داخل خانه ها به کار برده می شود.

برخی از این سیستم های مورد استفاده در ذیل تشریح می شود.

١-٢-١- CEBus ( (Consumer Electronics Bus

این سیستم بر مبنای استفاده در شبکه های محلی و در منازل طراحی شده است و استانداردهایی را جهت RF و PLC و تعدادی دیگر از شیوه های شبکه های خانگی ارائه می کند. که در مورد PLC، میزان و نحوة اعمال سیگنال با فرکانس معین بر شبکه توسط این استاندارد، تعیین می شود.

به عنوان مثال، مقداردودوئی (1) توسط، سیگنال اعمال شده در s100 مشخص می شود در حالی که (0) دودوئی با اعمال سیگنال به مدت s200 حاصل می شود. بنابراین در نهایت با توجه به تعداد کاراکترهای صفر و یک ارسال شده، وسیلة مورد نظر و نحوة کنترل آن مشخص می شود.

١-٢-٢- 10-X

10-X، نوعی از استاندارد عملی و قابل اجرا در منازل است این استاندارد شامل شیوة آدرس دهی به تک تک وسایل قابل کنترل داخل است در این روش با استفاده از نقاط عبور از صفر حامل( شبکه برق داخل خانه) به عنوان هم زمان کننده (synchronizer) عملیات ارسال و دریافت انجام می شود چنانکه حضور سیگنال پیوستة KHz 120 به عنوان (١) و عدم حضور این سیگنال به منزلة (۰) تلقی می شود در روش X10 ادوات مورد کنترل شامل دو آدرس هستند که عبارتند از آدرس خانه و آدرس ابزار مورد نظر .

و در نهایت یک آدرس کامل برای ارسال به روش X10 شامل کد شروع، آدرس خانه، آدرس ابزار وآدرس (کد) کارکرد می باشد.

سیستم X10 به گونه ای طراحی شده است که جهت ارتباط دو طرفه دچار محدودیت است. ونیز به نسبت استانداردهای دیگر، ازسرعت کمتری برخوردار است. با این وجود این سیستم جهت استفاده در اتوماسیون منازل، مناسب به نظر میرسد. (در فصل دوم به توصیف بیشتر این سیستم خواهیم پرداخت.)

١-٣- بررسی رفتار سیستمهای مبتنی بر PLC در حضور تداخل، نویز و اعوجاج؛

از آنجایی که سیستمهای توزیع و انتقال انرژی الکتریکی در بر دارنده نویز و تداخل ناشی از سیستمهای الکتریکی متصل یا مجاور به آنها می باشند، طبیعتا محیط مناسبی برای کاربری در سیستم های مخابراتی نمی‌باشند.

در زیر به برخی از موارد آسیب زا در سیستمهای مبتنی بر PLC اشاره می کنیم؛

نویز و اعوجاج: از جمله منابع مولد نویز در شبکه برق می توان به پدیده کرنا، جرقه، بانکهای تصحیح ضریب توان و برق شکن ها اشاره کرد. البته در شبکه های فشار ضعیف بسیاری ازین گونه نویزها توسط ترانسفورماتورهای مبدّل MV/LV (فشار متوسط به فشار ضعیف) حذف خواهند شد. در نتیجه بیشترین میزان تداخل و نویز در شبکه های خانگی مربوط به ادوات و ابزارالکتریکی مورد استفاده در منازل و ساختمانهاست.

در مورد اعوجاجهای ﻣﺆﺛﺮ در شکل موج باید گفت که اینگونه اعوجاجها معمولا تاٌثیر کمتری بر سیستم‌های مبتنی بر PLC دارند از جمله این اعوجاجها، بیشولتاژ یا زیرولتاژ شدن لحظه ای و نیز هارمونیک های موجود در شبکه است. هارمونیکهای موجود در شبکه از آن جهت قابل چشمپوشی هستند که در فرکانسهایی بسیار کمتر از فرکانس کار سیستم PLC اتفاق می افتد. آسیب عمده اعوجاج، رخداد تغییر در فرکانس می باشد. چنانچه بسیاری از سیستمهای ساده PLC با استفاده از فرکانس برق شهر اقدام به همزمان سازی میان فرستنده و گیرنده می کنند. بنابرین در سیستمهای مدرن از اتّکا به این روش پرهیز شده است.

۱-٤-بررسی امپدانس و تضعیف در کانال خط قدرت

مشخصة امپرانس یک کابل برق بدون بار با استفاده از مدل توزیع پارامتر استاندارد چنین به دست می‌آید:

که این مقدار در خصوص فرکانس های مورد استفاده در PLC ، تقریباً برابر است با به طوریکه L و C به ترتیب اندوکتانس و کاپاسیتانس خط بر واحد طول هستند .

بنابر وجود ادوات و تجهیزات برقی متصل به شبکه برق نمی توان شبکه متعادلی را انتظار داشت بنابراین به دست آوردن امپرانس با دو خطوط و یا حتی پیشگویی آنها دشوار خواهد بود.

اما با توجه به مشاهدات حاصل شده از امپدانس خطوط در فشار ضعیف مقدار این امپدانس کم می باشد .

از طرف دیگر با توجه به نظریه انتقال توان ماکزیمم لازمست که امپدانس کانال و فرستنده مطابق این نظریه تنظیم شود که این با توجه به مشخص نبودن مقدار امپدانس خطوط میسر نیست. از این رو طراحی فرستنده و گیرنده به گونه ای انجام می گیرد که کمترین میزان امپدانس خروجی و ورودی را به ترتیب دارا باشند.

همچنین افت ولتاژ در سیستم قدرت به همراه عدم حصول شرایط انتقال توان ماکزیمم سبب افت و تضعیف شدید در سیگنال مخابراتی خواهد شد.

١-٥-ملاحظات شبکه کوپلاژ

متداولترین شیوة کوپلاژ فرستنده و گیرنده به شکبة برق، شیوة کوپلاژ دیفرانسیلی است در این روش سیم فاز به عنوان ترمینال ورودی، وسیم نول به عنوان ترمینال خروجی در نظر گرفته می شود. در مواردی که سیم نول در دسترس نیست، مثل شبکه های فشار قوی، خط زمین به عنوان خط ترمینال دوم در نظر گرفته می شود .

روش دیگر با عنوان کوپلاژ حالت مشرک هر دو خط فاز و نول ترمینال اول استفاده می شود و خط زمین در طرف ترمینال دوم قرار می گیرد. البته این امر در ظاهر در نظر ما ناممکن جلوه می کند .

زیرا خطوط نول و زمین مستقیماً به ترانسفورماتور متصل شده اند. اما در عمل اندوکتانس ما بین نقطة کوپلاژ و نقطة اتصال کوتاه به اندازه ای است که امکان انتقال سیگنال را به وجود خواهد آورد.

چنین روشی به دلیل ایجاد برخی مشکلات و خطرات کمتر مورد استفاده قرار می گیرد.

در عمل جهت ایجاد کوپلاژ از دو روش استفاده می شود:

١-روش کوپلاژ خازنی، در این شیوه خازن نقش اصلی ایجاد کوپلاژ را بر عهده دارد.

٢-روش کوپلاژسلفی، در این شیوه با استفاده از یک سلف، سیگنال مخابراتی بر روی شبکة برق قرار می گیرد. بنابراین با قرار دادن سلف، دو شبکه برق و مخابرات از هم جدا می شود. توجه به پاسخ فرکانس از نکات اساسی در طراحی و انتخاب شبکه کوپلاژ است چنانچه در قسمت گیرنده، داشتن مشخصة پاسخ فرکانسی بالا گذر (و در نهایت میان گذر) جهت حذف حاملHz٥۰و گذراندن سیگنال مخابره شده بدون تضعیف مورد نظر است.

همچنین باید توجه داشت که چنین سیستمی نیاز به تطبیق امپدانس با امپدانس شبکه برق جهت انتقال بیشینة توان دارد.

بنابراین در طراحی شبکة کوپلاژ لازم است که ملاحظات بالا در نظر گرفته شود .

اکنون اگر به نحوة طراحی شیوة کوپلاژ سلفی( بدلیل ایمنی بیشتر) نظری بیفکنیم دو اصل زیر حائز اهمیت خواهد بود:

١-مقدار مناسب برای خازنCeq جهت ایجاد امپدانس کافی و در نتیجه حذف فرکانس برق Hz50.

٢-رخ داد تشدید در مدار سری L1Ceq جهت انتقال سیگنال با کمترین مشخصة امپدانس

شکل ۱: توپولوژی I

شکل ۱، ساده ترین توپولوژی کوپلاژ را نشان می دهد نکته ای که در اینجا نباید از نظر دور داشت آن است که استفاده از ترانسفورماتورهای هسته آهنی به سبب داشتن اندوکتانس نامشخص و متغیر، باعث ایجاد تغییر در مشخصات شبکة کوپلاژ خواهد شد. و جهت اصلاح این عیب می توان از ترانسفورماتور با دو سیم پیچ ثانویه استفاده کرد در این صورت مشخصات شبکه کمتر تحت تأثیر تغییرات اندوکتانس موثر ترانس قرار خواهند داشت زیرا با استفاده از ترانسفورماتور دو سیم پیچ پهنای باند وسیعتر شده شیب پاسخ فرکانسی در فرکانس نصف توان، نسبت به قبل کاهش می یابد بنابراین چنین سیستمی نسبت به تغییرات اندوکتانس سیم پیچها، تغییرات فرکانسی کمتری از خود نشان خواهد داد برای تبدیل پهنای باند به حالت میان گذر، چنانچه در قسمت گیرنده مورد نیاز است باید از فیلترهایی در ثانویه ای که به گیرنده اتصال می‌یابد، استفاده نمود.

شکل ٢: توپولوژی I به صورت اصلاح شده.

٢-١- استفاده از پروتکل 10-X:

اشاره،

پیشتر اشاره شد که پروتکل 10-X برای ایجاد ارتباط و مخابرة داده ها از طریق خطوط الکتریکی داخل منازل طراحی شده است سیگنال مخابره شونده در این شیوه یک سیگنال پیوسته با فرکانس KHz١٢۰ است که پس از عبور حامل (ولتاژ برق) از صفر ارسال می شود. وقوع این سیگنال به مدت ms١ به منزلة ارسال (١) منطقی و عدم ارسال سیگنال به منزله صفر منطقی خواهد بود دامنة سیگنال ارسالی نیز در وسعت vp-p١۰-٥ در نظر گرفته شده است البته این میزان در مسیر انتقال بدلیل انتشار و مواجهة با موانع به کاهش می یابد.

لازم است به منظور بررسی موانع استفاده از این روش، نحوة رفتار کانال انتقال خطوط حامل الکتریکی را خصوصاً در فرکانسهای بالا تر مورد ارزیابی قرار دهیم .

خط انتقال و توزیع برق، در فرکانس kHz١٢۰ پیچیدگی قابل توجهی از خود نشان خواهد داد از جمله می توان به وقوع تشدید در قله و گره های برق به دلیل تأثیر خازن ها و القاگرهای موجود در خطوط توزیع اشاره کرد.

اضافه برآن، موانعی بر سر راه ارسال سیگنال وجود خواهد داشت که از طریق مکنده های سیگنال و یا مولد های نویز ایجاد خواهد شد از این رو باید با بهره گیری از روش هایی عملی به رفع این مشکلات کمک شود.

در زیر به برخی از روشهای قابل اجرا اشاره شده است که هر کدام به طور جداگانه در بخشهای بعد شرح خواهد شد.

١-چنانچه تضعیف زیادی در سیگنال دریافت شده مشاهده شود لازم است که شبکة کوپلاژ استفاده شود همچنین اگر دریافتی توسط یکی از گیرنده ها ابزارهای مورد کنترل در منزل تضعیف بیشتری نسبت به دیگر ابزارها داشته باشد لازم است آن مدار مورد بازبینی قرار گیرد و احتمال وجود مکندة سیگنال در آن بررسی شود .

٢- ساده ترین روش برای انجام این کار جداسازی قسمت های مختلف ادوات الکتریکی از آن مدار و متصل نمودن تک تک آنها به شبکه برق بنابراین هر گاه افت ولتاژ حاصل شد همان قسمت به عنوان مکندة سیگنال عمل نموده و لازم است از مدار فیلتر شود.

مولد های نویز، مانع دیگری در انتشار سیگنال در x-10 می باشد بروز نویز به ویژه در باند عبوری مورد نظر ممکن است سبب شود تا صفر منطقی ارسال شده در گیرنده به صورت 1 منطقی آشکار سازی شود ادوارت مولد نویز نیز به مانند مکندة سیگنال عمدتاً منابع تغذیه سوئیچینگ، لامپ های فلورسنت دادوات مخابرة بی سیم، هستند بنابراین چنانچه پس از روشن کردن هر کدام از این ابزار سطح نویز به میزان زیادی افزایش یافت برخی از ابزارهای مونیتورینگ سیگنال سطح نویزهای زمینه را نشان می دهد باید آن ابزار را به عنوان مولد نویز شناخته مشابه مکنده های سیگنال از سیستم ایزوله نمود.

انتظار می رود پس ایجاد ایزولاسیون و کوپلاژ مناسب، توان سیگنال ارسالی و صحت آشکار سازی آن قابل قبول باشد اگر چنانچه در مورد بعضی از ابزارهای مورد کنترل همچنان ایرادهایی وجود داشته باشد می باید آن وسیله را تا حد امکان به جعبة تقسیم برق نزدیک تر کرد. این کار، به منظور کاهش اثر القائی خطوط الکتریکی صورت می گیرد همچنین استفاده از تقویت کنندة سیگنال در خروجی فرستنده و یا در تابلوی جعبة تقسیم برق وجود دارد.

2-2- بروز نویز و مکش سیگنال در سیستم های مبتنی بر XIO:‌

2-2-1- مکنده های سیگنال :

منابع تغذیه ای سوئیچینگ، بنابر امکان و دستیابی به سطوح مختلف تغذیه و حجم کم و قیمت مناسب، یکی از گزینه های پر کار برد در وسایل الکترونیکی می باشد. اینگونه منابع با یکسو سازی ولتاژ ها 220، ایجاد یک ولتاژ DC ابتدایی نموده و از طریق اعمال این ولتاژ به مدار برشگری با فرکانس بالا [2] و عبور ولتاژ خارجی مدار برشگر از یک ترانسفورماتور با فرکانس بالا، سطوح مختلف تغذیة مورد نیاز را فراهم می‌نماید. همچنانکه به نظر می رسد، برشگر ها تولید کننده نویزهای الکتریکی، قابل انتشار بر روی خطوط الکتریکی توزیع کنندة برق می باشند از این رو سازندگان این گونه منابع سعی در کاهش این اثرات دارند. از جملة رایجترین روشهای فیلتر کردن این منابع، به کار گیری خازن در ورودی جهت شنت کردن سیگنالهای تداخل به زمین است.

همین امر سبب ایجاد مشکلاتی برای ابزارهای دارای خط الکتریکی مشترک با این منابع می شود. زیرا سیگنالهای فرکانس بالای موجود در این خطوط، توسط چنین منابعی وارد زمین خواهند شد. اینگونه منابع و ادوات مشابه آنها را با عنوان «مکنده های سیگنال[3]» می شناسیم.

بهترین راه رفع این مشکل، جدا سازی منابع تغذیة سوئیچینگ و سیستم های مشابه از طریق فیلتر کردن می‌باشد. ( فیلتری با نام XPPF ، به منظور استفاده از سیستم های مبتنی بر X10 طراحی شده و در بازار موجود می باشد) روش های مختلفی برای یافتن مکنده های سیگنال در خطوط الکتریکی وجود دارد از جمله می توان ابتدا مسیرهای انشعابات خطوط برق داخل ساختمان را مشخص کرد( به کمک نقشه و یا با آزمون هر پریز برق که نیاز به مهارت دارد) سپس با اتصال مدار فرستندة سیگنال در نزدیکترین محل به جعبه تقسیم برق و نیز در دست داشتن اسکوپ جهت مشاهده قدرت سیگنال ارسالی، قوت سیگنال را در انشعاب مورد مطالعه قرار دهیم سپس با وارد نمودن هر مدار الکتریکی به آن انشعاب به تغییرات سیگنال را مشاهده نمائیم. در این صورت با مشاهدة تغییرات چشمگیر سیگنال می توان مدار مکندة سیگنال را مشخص و آنرا جدا سازی نمود.

ذکر دو نکته در این قسمت ضروری به نظر می رسد:

1-از آنجا که از تأثیر قابل ملاحظه مدارات تغذیة سوئیچینگ مطلع هستیم بهتر است ابتدا این منابع و سیستم ها را استفاده کننده از آنها نظیر کامپیوترهای شخصی را از اتصال به خطوط برق خارج نمائیم.

2- به منظور جدا سازی مکنده های سیگنال و نیز مولدهای نویز، فیلترهای خاصی طراحی شده است که توصیه می شود در صورت دسترسی داشته حتماً از آنها استفاده شود.

2-2-2- مولدهای نویز

همانطور که پیشتر اشاره شد، مانع دیگر در ایجاد قابلیت اطمینان در سیستم X10 مولدهای نویز هستند. مولدهای نویز از آنجا که ذاتاً دارای نویز بوده و بدون هیچ فیلتر از پیش طراحی شده ای مستقیماً به برق متصل می شوند، سبب بروز اشکال در گیرندة X10 می شود و دلیل این مطلب آنست که فرکانس نویز ایجاد شده درست در محدودة باند عبور سیگنال ارسالی X10 قرار دارد.

متهمان عمدة در این بخش لامپ های فلورسنت فشرده هستند. چه آنکه برخی از انواع این دسته از لامپها درست با مرکزیت نقاط عبور از صفر ایجاد نویز می کنند. یعنی دقیقاً در زمان ارسال سیگنال در استانداردX10.

شکل (1-2)، ارسال سیگنال X10 در حضور نویز انتشار یافته از لامپ فلورسنت

همچنین ممکن است در موارد پیچیده تر که چندین لامپ فلورسنت موجودند. با نویزهای به وجود آمده به صورت ضربان های دوره ای مواجه شویم(شکل ٢-٢) . این موضوع به دلیل تغییر فرکانس اندکی مابین برشگرهای موجود در لامپها به وجود می آید. زیرا بروز اندک تفاوتی در فرکانس سبب تقویت یا تضعیف دامنه در نقاط مشخص می گردد.

شکل (٢-٢)، نویز تولید شده از چند لامپ فلورسنت به صورت ضربانهای متناوب

روشهای خطا یابی (یافتن مولد نویز) و جدا سازی توسط فیلتر در این بخش نیز مشابه روش به کار رفته در مکنده های سیگنال است تنها به نوع فیلتر قابل استفاده باید توجه شود که جهت استفاده در این سیستم و حذف این دسته از نویزها طراحی شده باشد. از جمله این نمونه ها، XPPF و Leviton 6287 پیشنهاد می شود.

شاید اینگونه به نظر برسد که استفاده از پروتکل X10 به همراه صرف وقت و هزینه برای دستیابی به سیستم مطمئن چندان مقرون به طرفه نیست. باید توجه داشت که ارائه پروتکل X10 به دهة 70 میلادی باز می گردد. زمانی که منازل و ساختمانها به هیچ وجه مانند امروز مملو از ابزارها و ادوات مصرف کنندة برق نبوده است از این جهت ایجاد صرف وقت و هزینه بیشتر متوجه تولید کنندگان ابزارهای مولد نویز و یا مکنده های سیگنال خواهد بود. با وجود این اصلاحاتی در این پروتکل مخابراتی صورت پذیرفته است. و با عنوان پروتکل XTB مورد استفاده قرار خواهد گرفت.

بسیاری از فرستنده های مبتنی بر X10 بنابر استفاده از منابع تغذیة‌ بدون ترانسفورماتور – که بدلیل ارزان و ساده بودن مورد استفاده اند- قادر به توزیع میزان انرژی قابل توجهی نیستند. همچنین از جهت دامنة سیگنال ارسالی( 5vpp)‌،‌ محو شدگی سیگنال در فواصل دور بسیار متحمل می باشد. نیز جدا سازی از طریق فیلتر مطابق آنچه مورد بحث قرار گرفت از جهت وجود بارهای دینامیک و استفاده از فیلترهای خاص، بعضاً غیر عملی است. طراحی XTB بر مبنای تقویت انرژی سیگنال ارسالی X10 به منظور غلبه بر ناهمواری های موجود در سیستم توزیع الکتریکی صورت گرفته است. چنانکه با استفاده از منابع تغذیة ترانسفورمری و ارتقای انرژی سیگنال به 10 برابر میزان ارسالی در شیوة‌ قبل، دامنة‌سیگنال فرستنده به میزان 207pp خواهد رسید.

در این فصل طراحی مدارات فرستنده و گیرندة‌ مبتنی بر استاندارد X10 و با بکار گیری میکروکنترلرهای خانوادة‌PIC18F مورد بررسی قرار خواهد گرفت و در هر مور به تفکیک، ابتدا طراحی مدارات سخت افزاری مورد ارزیابی قرار خواهد گرفت و سپس الگوریتم و برنامة‌ ایجاد شده جهت برنامه‌ریزی میکروکنترلر ارائه خواهد شد. نکته ای که در این میان حائز اهمیت است توجه به روش های بکار رفته جهت اتصال به خطوط برق(اعم از کوپلاژ و فیلتریزاسیون )‌ و همچنین دریافت و جداسازی سیگنال و پرش و رفع نویز و تقویت سیگنال می باشد. دقت در الگوریتم برنامه،‌ نحوة‌ بکارگیری وقفه های داخلی و خارجی و همچنین تولید، ارسال و دریافت پالس توسط میکروکنترلر نیز نحوة باپاس میکروکنترلرهای خانوادة‌ PIC18F برای علاقمندان به آشنایی با نحوة‌کار با میکروکنترلرها مفید خواهد بود. از این رو در ابتدای این فصل به توصیف مختصر معماری میکرو کنترلرهای PIC می پردازیم.

3-1 توصیف ساختار میکروکنترلرهای PIC

٣-١-١-انواع میکروکنترلرهای PIC

میکروکنترلر های PIC را در حالت کلی می توان به پنج دسته تقسیم نمود. دسته اول میکروکنترلرهای هشت پایه PIC12CXXX هستند که دارای دستور العملهای دوازده یا چهارده بیتی هستند. منظور از دستور العمل دوازده یا چهارده بیتی این است که Opcode دستور العملهای این میکروکنترلرها به صورت دوازده یا چهارده بیت در حافظه ذخیره می شود. از مشخصات این میکروکنترلرها می توان به ولتاژ تغذیه کم آنها ( در حدود 2.5V-5.5V)‌، کوچکی و پایه های کم آنها، دارا بودن قابلیت وقفه، دارا بودن فضای پشته جداگانه و حافظه EEPROM اشاره نمود. دسته دوم میکروکنترلرهای PIC16C5X هستند که دارای دستور العملهای دوازه بیتی بوده، در ابعاد 14، 18، 20 و 28 پایه ساخته شده اند. ولتاژ کاری این دسته 2V بوده، نوع PIC16HV5XX قابلیت کار کردن تا ولتاژ 15V را نیز داراست. نوع سوم میکروکنترلرهای خانواده PIC16CXXX هستند که دارای دستور العملهای چهارده بیتی بوده، در ابعاد 18 تا 68 پایه ساخته شده اند. این دسته از میکروکنترلرها علاوه بر قابلیت پشتیبانی از وقفه های متعدد، دارای ماژولهای جانبی متعددی هستند که اکثر نیازهای صنعتی را برآورده می کنند. میکروکنترلرهای PIC17CXXX و PIC18X دسته چهارم و پنجم از میکروکنترلرهای PIC هستند که از مشخصات آنها می توان به دارا بودن دستورالعملهای شانزده بیتی، قابلیت پشتیبانی از وقفه ها، دارا بودن ماژولهای جانبی متعدد و تعداد هفتاد و پنج دستور العمل اشاره نمود.

میکروکنترلرهای PIC میکروکنترلرهایی طراحی شده با تکنولوژی Nanowatt بوده،‌دارای ماژولهای جانبی و قابلیت های متعددی هستند. از جمله ویژگی این میکروکنترلرها می توان به مدهای کاری مختلف، دارا بودن حافظه Flash با ظرفیت بین 48KByte تا 128 KByte ، دارا بودن 4Kbyte حافظه RAM و 1KByte حافظه EEPROM اشاره نمود. حافظه Flash و EEPROM این میکروکنترلر ها به ترتیب قابلیت خواندن و نوشتن تا صد هزار و یک میلیون مرتبه را دارا بوده،‌ مدت حفظ اطلاعات آنها بدون Refresh کردن، تا چهل سال تخمین زده می شود. از دیگر ویژگیهای این میکروکنترلرها دارا بودن ده نوع منبع پالس ساعت مختلف است که به کاربرد قابلیت انعطاف خاصی در انتخاب اسیلاتور مورد نیاز می دهد. چهار مد اسیلاتور کریستالی، مد اسیلاتور خارجی، مد اسیلاتورهای RC داخلی و حلقه قفل فاز داخلی برای ضرب فرکانس اسیلاتور خارجی در عدد چهار از جمله مدهای کاری اسیلاتور در این میکروکنترلرهاست.

مدهای مختلف مدیریت توان از دیگر ویژگی این میکروکنترلرهاست که استفاده از پالس ساعت داخلی و پالس ساعت Timer 1 را در مد Run فراهم کرده و تلفات توان را کاهش می دهند. همچنین با فعال شدن مد Idle ،‌ ماژولهای خارجی به کار خود ادامه می دهند ولی CPU در این مد متوقف شده، تلفات توان را کاهش می دهد. تغییر مدها با استفاده از نرم افزار صورت گرفته و به کاربر اجازه می دهد تا توان تلفات را کنترل نماید.

میکروکنترلرهای PIC دارای سه نوع حافظه RAM، EEPROM و حافظه Flash هستند. حافظه RAM برای ذخیره موقت اطلاعات به کار رفته و CPU برای اجرای برنامه و انجام محاسبات خود از آن استفاده می کند. به عبارت دیگر این نوع حافظه به عنوان یک چکنویس در اختیار CPU قرار گرفته، با قطع جریان برق اطلاعات آنها از بین نمی رود. حافظه Flash برای ذخیره کدهای برنامه به کار برده شده و با توجه به این که حافظه EEPROM دارای قابلیت خواندن و نوشتن به تعداد دفعات بسیار زیاد است. از این نوع حافظه برای ذخیره دیتاهایی استفاده می شود که ممکن است دارای تغییرات بسیار زیادی باشند.

در زیر به توصیف نحوة استفاده از حافظة Flash می پردازیم.

شکل(1-1 ) نماِیش بلوکی معماری میکروکنترلر PIC18F452

٣-١-٢-بیتهای پیکر بندی(‌Configuration Bits)‌

قسمتی از حافظه Flash میکروکنترلرهای PIC18 که در محدوده آدرس 300000h-3FFFFFh قرار دارد، تحت عنوان فضای حافظه پیکربندی شناخته شده و محلی است که مقدار رجیسترهای پیکربندی، ID میکروکنترلر و ID برنامه نویس در آنجا ذخیره می شود. چنانچه مشاهده می شود، این رجیسترها دارای آدرسی بسیار بالاتر از آدرس قابل دسترسی حافظه Flash بوده، برای کاربردهای خاص که در ادامه بررسی خواهد شد، به کار گرفته می شوند.

رجیسترهای پیکربندی همان طور که از نام آنها پیداست، برای پیکربندی و انتخاب قابلیتهای خاص میکروکنترلر به کار برده می شوند. به عنوان مثال انتخاب مد کاری حافظه،‌ فعال یا غیر فعال کردن شمارنده Watchdog، انتخاب اسیلاتور تأمین کننده پالس ساعت میکروکنترلر و قابلیتهای دیگری که در طول پروژه بررسی خواهد شد، با استفاده از رجیسترهای پیکر بندی مختلف، تنظیم می شوند.

بیتهای این رجیستر ها در صورت برنامه ریزی صفر و در غیر این صورت یک خواهند بود برنامه ربزی این بیتها مشابه خواندن و نوشتن حافظه Flash بوده،‌ مورد بررسی قرار خواهد گرفت. به عنوان مثال مد کاری حافظه میکروکنترلر با برنامه ریزی دو بیت کم ارزش رجیستر پیکر بندی CONFIG3L تنظیم می شود.

٣-١-٣-نحوه ذخیره و اجرای دستورالعملها در حافظه Flash

با توجه به آدرس دهی شدن حافظه Flash به صورت بایتی و شانزده یا سی و دو بیتی بودن دستورالعملها،‌هر دستورالعمل در دو یا چهار بایت از حافظه ذخیره می شود. بایت کم ارزش دستور العمل همیشه در یک آدرس زوج از حافظه ذخیره می شود. به عبارت دیگر آدرس ذخیره بایت کم ارزش صفر است. در نتیجه با توجه به شانزده بیتی بودن حافظه Flash، PC به صورت دو واحدی افزایش یافته و بیت کم ارزش آن همیشه صفر خواهد بود.

میکروکنترلر های خانواده PIC18 دارای هشت دستورالعمل چهار بایتی CALL، MOVFF ، GOTO، LSFR، ADDULNK، CALLW، ‌MOVSS‌ ، SUBLNK هستند. در تمام این دستورالعملها، چهار بیت پر ارزش Word دوم یک بوده، مشابه دستورالعمل NOP عمل کرده و دوازده بیت دیگر دیتایی است که برای آدرس دهی بایتی از حافظه به کار می رود. در نتیجه در هنگام اجرای دستورالعمها، پس از واکشی دو بایت اول، دو بایت دوم واکشی و دستورالعمل اجرا می شود ولی اگر به دلایلی دو بایت اول واکشی نشد و دو بایت دوم واکشی و اجرا شد، در این صورت فقط با یک دستور العمل NOP اجرا خواهد شد.

٣-١-٤-سیکل دستورالعمل میکروکنترلرهای PIC

پالس ساعت اعمالی به میکروکنترلر( داخلی یا خارجی)، در داخل میکروکنترلر بر چهار تقسیم شده و چهار پالس ساعت غیر همپوشان ایجاد می کند. در زمانهای خاص هر کدام از این پالسها، اتفاق تعیین شده ای رخ می دهد. به عنوان مثال فقط در لبه بالارونده پالس ساعت Q1 مقدار PC تغییر و واکشی دستورالعملها انجام می شود. دستورالعمل واکشی شده در رجیستر دستور العمل[4] ذخیره و در مدت زمان Q1 تا Q4 بعدی تشخیص داده شده و اجرا می شود. پالسهای ساعت ایجاد شده و نحوه اجرای یک دستور العمل در شکل ٣-٢ نشان داده شده است. به چهار سیکل Q1 تا Q4 که مدت زمان اجرای یک دستورالعمل می باشد. اصطلاحاً یک سیکل دستورالعمل گفنه شده، با TCY نمایش داده می شود. هنگام اجرای یک دستورالعمل که در سیکل قبلی واکشی شده است، دستورالعمل بعدی واکشی می شود. در نتیجه بر اساس معماری Pipeline ، هر دستورالعمل در یک سیکل دستور العمل اجرا می شود. روند واکشی و اجرای دستورالعملهای یک مثال ساده در شکل ٣-٣ نشان داده شده است. همان طور که در شکل نشان داده شده است، دستورالعملهای پرش که باعث تغییر PC می شوند، در دو سیکل دستورالعمل اجرا می شوند.

شکل 2-3 ، نشاندهنده پالس ساعت و سیکل اجرای یک دستورالعمل

شکل ٣-٣، نشاندهنده روند واکشی و اجرای دستورالعملها

٣-١-٥- منابع وقفه درمیکروکتترلرهای PIC

میکروکنترلرهای خانواده PIC18F8722 دارای منابع وقفه متعددی هستند. منظور از منابع وقفه،‌ منابعی هستند که می توانند در روند اجرای برنامه اصلی وقفه ایجاد کنند. این منابع به دو دسته منابع وقفه داخلی و خارجی تقسیم می شوند. منابع وقفه داخلی، وقفه های ایجاد شده توسط ماژولهای داخلی میکروکنترلر هستند. به عنوان وقفه نوشتن در حافظه که قبلاً بررسی شد، یک نمونه از منابع وقفه داخلی است. منابع وقفه خارجی نیز توسط پایه های خاصی از میکروکنترلر که برای این کار در نظر گرفته شده است، می توانند در روند اجرای برنامه وقفه ایجاد کنند. به عنوان مثال با افزایش درجه حرارت در یک پروسه، سنسور مربوط با ارسال یک سیگنال مشخص به پایه وقفه خارجی میکروکنترلر، شرایط را به آن اطلاع می دهد.

علاوه بر این منابع وقفه را می توان به دو دسته وقفه های با اولویت بالا و پایین تقسیم نمود. اولویت وقفه ها به این مفهوم است که اگر همزمان دو وقفه یکی با اولویت بالا و دیگری با اولویت پایین رخ دهد، ابتدا برنامه سرویس وقفه با اولویت بالا اجرا خواهد شد. همچنین اگر برنامه سرویس وقفه با اولویت پایین در حال انجام باشد و وقفه با اولویت بالا فعال شود. برنامه سرویس وقفه بالا با اولویت بالا اجرا شده و سپس برنامه سرویس وقفه با اولویت پایین دنبال می شود. اولویت منابع وقفه را می توان با استفاده از نرم افزار تغییر داد.