فایل بای | FileBuy

مرجع خرید و دانلود گزارش کار آموزی ، گزارشکار آزمایشگاه ، مقاله ، تحقیق ، پروژه و پایان نامه های کلیه رشته های دانشگاهی

فایل بای | FileBuy

مرجع خرید و دانلود گزارش کار آموزی ، گزارشکار آزمایشگاه ، مقاله ، تحقیق ، پروژه و پایان نامه های کلیه رشته های دانشگاهی

کار آموزی : صنعت برق

در یک هادی عایق شده مانند قطعه‌ای سیم مسی ، الکترونهای آزاد شبیه مولکولهای گازی که در ظرفی محبوس شده‌اند، حرکات کاتوره‌ای انجام می‌دهند و مجموعه حرکات آنها در طول سیم هیچ گونه جهت مشخصی ندارد تعداد الکترونهایی که به چپ حرکت می‌کنند با تعداد الکترونهایی که به راست حرکت می‌کنند، یکی است و برآیند آنها صفر می‌باشد ولی اگر دو سر سیم را به باتری وصل کنی
دسته بندی برق
فرمت فایل doc
حجم فایل 276 کیلو بایت
تعداد صفحات فایل 75
کار آموزی : صنعت برق

فروشنده فایل

کد کاربری 8044

مقدمه

در یک هادی عایق شده مانند قطعه‌ای سیم مسی ، الکترونهای آزاد شبیه مولکولهای گازی که در ظرفی محبوس شده‌اند، حرکات کاتوره‌ای انجام می‌دهند و مجموعه حرکات آنها در طول سیم هیچ گونه جهت مشخصی ندارد. تعداد الکترونهایی که به چپ حرکت می‌کنند با تعداد الکترونهایی که به راست حرکت می‌کنند، یکی است و برآیند آنها صفر می‌باشد. ولی اگر دو سر سیم را به باتری وصل کنیم، این برآیند دیگر صفر نیست.

فهرست

عنوان صفحه

جریان الکتریکی 1

تاریخچه برق و الکتریسته 2

مشخصات جریان الکتریکی 2

سرعت رانش 4

چگالی جریان الکتریکی 4

اشکال مختلف جریان الکتریکی 5

اندازه گیری جریان الکتریکی 6

قانون اهم 7

آمپر متر چیست؟ 9

طرز کار آمپر متر 10

بکار بردن آمپر متر 12

مقاومت 14

تولید 16

تعاریف الکتریکی 17

تاریخچه تولید جریان الکتریسته 19

منابع انرژی اولیه بکار رفته در تولید برق 22

اتصال کوتاه برقی 24

برق اضطراری 26

انتقال توان الکتریکی 28

ورودی شبکه برق 29

خروجی شبکه 30

تولید 32

ژنراتور برقی(الکتریکی) 36

دیناموی گرام 38

مولدهای جریان مستقیم 42

ماشین های الکتریکی جریان مستقیم 43

جریان متناوب 44

توزیع برق و تغذیه خانگی 45

فرکانسهای AC در کشورها 49

تولید برق 55

لرزش دیوارها هم برق تولید می کند 66

نتیجه گیری 68

منابع 69

جریان الکتریکی در برق

جریان الکتریکی در برق ، جریان سرعت عبور الکترونها در یک سیم مسی یا جسم رسانا است. جریان قراردادی در تاریخ علم الکتریسته ابتدا به صورت عبور بارهای مثبت تعریف شد. هر چند امروزه می‌دانیم که در صورت داشتن رسانای فلزی ، جریان الکتریسته ناشی از عبور بارهای منفی ، الکترون ، در جهت مخالف است. علیرغم این درک اشتباه ، کماکان تعریف قراردادی جریان تغییری نکرده است. نمادی که عموما برای نشان دادن جریان الکتریکی (میزان باری که در ثانیه از مقطع هادی عبور می‌کند) در مدار بکار می‌رود، I است.

تاریخچه برق و الکتریسیته

تاریخ الکتریسیته به 600 سال قبل از میلاد می‌رسد. در داستانهای میلتوس (Miletus) می‌خوانیم که یک کهربا در اثر مالش کاه را جذب می‌کند. مغناطیس از موقعی شناخته شد که مشاهده گردید، بعضی از سنگها مثل مگنیتیت ، آهن را می‌ربایند. الکتریسیته و مغناطیس ، در ابتدا جداگانه توسعه پیدا کردند، تا این که در سال 1825 اورستد (Orested) رابطه‌ای بین آنها مشاهده کرد. بدین ترتیب اگر جریانی از سیم بگذرد می‌تواند یک جسم مغناطیسی را تحت تأثیر قرار دهد. بعدها فاراده کشف کرد که الکتریسیته و مغناطیس جدا از هم نیستند و در مبحث الکترومغناطیس قرار می‌گیرد.

مشخصات جریان الکتریکی

از نظر تاریخی نماد جریان I ، از کلمه آلمانی Intensit که به معنی شدت است، گرفته شده است. واحد جریان الکتریکی در دستگاه SI ، آمپر است. به همین علت بعضی اوقات جریان الکتریکی بطور غیر رسمی و به دلیل همانندی با واژه ولتاژ ، آمپراژ خوانده می‌شود. اما مهندسین از این گونه استفاده ناشیانه ، ناراضی هستند.

آیا شدت جریان در نقاط مختلف هادی متفاوت است؟

شدت جریان در هر سطح مقطع از هادی مقدار ثابتی است و بستگی به مساحت مقطع ندارد. مانند این که مقدار آبی که در هر سطح مقطع از لوله عبور می‌کند، همواره در واحد زمان همه جا مساوی است، حتی اگر سطح مقطعها مختلف باشد. ثابت بودن جریان الکتریسیته از این امر ناشی می‌شود که بار الکتریکی در هادی حفظ می‌شود. در هیچ نقطه‌ای بار الکتریکی نمی‌تواند روی هم متراکم شود و یا از هادی بیرون ریخته شود. به عبارت دیگر در هادی چشمه یا چاهی برای بار الکتریکی وجود ندارد.

سرعت رانش

میدان الکتریکی که بر روی الکترونهای هادی اثر می‌کند، هیچ گونه شتاب برآیندی ایجاد نمی‌کند. چون الکترونها پیوسته با یونهای هادی برخورد می‌کنند. لذا انرژی حاصل از شتاب الکترونها به انرژی نوسانی شبکه تبدیل می‌شود و الکترونها سرعت جریان متوسط ثابتی (سرعت رانش) در راستای خلاف جهت میدان الکتریکی بدست می‌آورند.

چگالی جریان الکتریکی

جریان I یک مشخصه برای اجسام رسانا است و مانند جرم ، حجم و ... یک کمیت کلی محسوب می‌شود. در حالی که کمیت ویژه‌ دانستیه یا چگالی جریان j است که یک کمیت برداری است و همواره منسوب به یک نقطه از هادی می‌باشد. در صورتی که جریان الکتریسیته در سطح مقطع یک هادی بطور یکنواخت جاری باشد، چگالی جریان برای تمام نقاط این مقطع برابر j = I/A است. در این رابطه A مساحت سطح مقطع است. بردار j در هر نقطه به طرفی که بار الکتریکی مثبت در آن نقطه حرکت می‌کند، متوجه است و بدین ترتیب یک الکترون در آن نقطه در جهت j حرکت خواهد کرد.

اشکال مختلف جریان الکتریکی

در هادیهای فلزی ، مانند سیمها ، جریان ناشی از عبور الکترونها است، اما این امر در مورد اکثر هادیهای غیر فلزی صادق نیست. جریان الکتریکی در الکترولیتها ، عبور اتمهای باردار شده به صورت الکتریکی (یونها) است، که در هر دو نوع مثبت و منفی وجود دارند. برای مثال، یک پیل الکتروشیمیایی ممکن است با آب نمک (یک محلول از کلرید سدیم) در یک طرف غشا و آب خالص در طرف دیگر ساخته شود. غشا به یونهای مثبت سدیم اجازه عبور می‌دهد، اما به یونهای منفی کلر این اجازه را نمی‌دهد. بنابراین یک جریان خالص ایجاد می‌شود.

جریان الکتریکی در پلاسما عبور الکترونها ، مانند یونهای مثبت و منفی است. در آب یخ زده و در برخی از الکترولیتهای جامد ، عبور پروتونها ، جریان الکتریکی را ایجاد می‌کند. نمونه‌هایی هم وجود دارد که علیرغم اینکه در آنها ، الکترونها بارهایی هستند که از نظر فیزیکی حرکت می‌کنند، اما تصور جریان مانند 'حفره‌های (نقاطی که برای خنثی شدن از نظر الکتریکی نیاز به یک الکترون دارند) مثبت متحرک ، قابل فهم تر است. این شرایطی است که در یک نیم هادی نوع p وجود دارد.

اندازه گیری جریان الکتریکی

جریان الکتریکی را می‌توان مستقیما توسط یک گالوانومتر اندازه گیری کرد. اما این روش نیاز به قطع مدار دارد که گاهی مشکل است. جریان را می‌توان بدون قطع مدار و توسط اندازه گیری میدان مغناطیسی که جریان تولید می‌کند، محاسبه کرد. ابزارهای مورد نیاز برای این کار شامل سنسورهای اثر هال ، کلمپ گیره‌های جریان و سیم پیچهای روگووسکی است.

مقاومت الکتریکی

اگر اختلاف پتانسیل معینی را یک بار به دو انتهای سیم مسی و بار دیگر به دو انتهای میله چوبی وصل کنیم، شدت جریانهای حاصل در هر لحظه با هم اختلاف زیادی خواهند داشت. خاصیتی از هادی را که اختلاف مزبور را باعث می‌شود، مقاومت الکتریکی گویند، که آن را با R نشان می‌دهند و مقدار آن برابر R = V/I است که در آن V اختلاف پتانسیل بین دو سر سیم و I جریان الکتریکی است. واحد مقاومت الکتریکی اهم یا ولت بر آمپر می‌باشد.

توان الکتریکی

یک مدار الکتریکی را در نظر می‌گیریم که حامل جریان I و ولتاژ V بوده و یک مقاومت Rدر آن قرار دارد. بار الکتریکی dq موقع عبور از مقاومت به اندازه Vdq ، از انرژی پتانسیل الکتریکی خود را از دست می‌دهد. طبق قانون بقای انرژی ، این انرژی در مقاومت به صورت دیگری ، مثلا گرما ظاهر می‌شود. گر در مدت زمان dt ، انرژی du حاصل شود، در این صورت داریم:

P=du/dt


در این رابطه P ، توان الکتریکی است که دارای واحد وات می‌باشد. برای یک مقاومت می‌توان توان را به صورت زیر:

P = RI2 نوشت.

قانون اهم

قانون اهم که به نام کاشف آن جرج اهم نام گذاری شده است، بیان می دارد که نسبت اختلاف پتانسیل (یا افت ولتاژ) بین دو سر یک هادی (و مقاومت) به جریان عبور کننده از آن به شرطی که دما ثابت بماند، مقدار ثابتی است:

V \over I} = R}

که در آن V ولتاژ و I جریان است. این معادله منجر به یک ثابت نسبی R می شود که مقاومت الکتریکی آن وسیله نامیده می شود. این قانون تنها برای مقاومتهایی صادق است که مقاومت شان به ولتاژ اعمالی دو سرشان وابسته نباشد که به این مقاومت ها مقاومت های اهمی یا ایده آل یا وسیله های اهمی گفته می شود. خوشبختانه شرایطی که در آن قانون اهم صادق است، بسیار عمومی است.( قانون اهم هیچگاه برای ابزارهای دنیای واقعی کاملا دقیق نیست چرا که هیچ ابزار واقعی وجود ندارد که یک ابزار اهمی باشد). معادله V / I = R حتی برای ابزارهای غیر اهمی هم صادق است اما در آن صورت دیگر مقاومت R یک مقدار ثابت نیست و به مقدار V وابسته است. برای اینکه بررسی کنیم که آیا ابزاری اهمی است یا نه، می توان Vرا بر حسب I رسم کرد و نمودار بدست آمده را با خط مستقیمی که از مبدا می گذرد مقایسه کرد. معادله قانون اهم اغلب بصورت :

V = I \cdot R

بیان می شود چرا که این معادله صورتی است که اکثر اوقات همراه مقاومت ها بکار برده می شود. فیزیکدانان اغلب فرم میکروسکوپیک قانون اهم را استفاده می کنند:

{mathbf{j} = \sigma \cdot \mathbf{E\

که در آن j چگالی جریان ( جریان عبوری از واحد حجم)، & هدایت و E میدان الکتریکی است. و در واقع فرمی است که اهم قانونش را بیان کرد. فرم عمومی V = I·R که در طراحی مدارات بکار می رود، نسخه ماکروسکوپیک متوسط گیری شده فرم اصلی است. دانستن این مطلب مهم است که قانون اهم یک قانون گرفته شده از ریاضیات نیست ولی بخوبی توسط شواهد تجربی تایید می شود. گاهی اوقات هم قانون اهم به هم می خورد چرا که این قانون بسیار ساده سازی شده است. منشا اصلی به وجود آمدن مقاومت در مواد در برابر جریان الکتریکی را می توان عیب ها، ناخالصی های مواد و این واقعیت که الکترون ها خودشان اتم ها را به این طرف و آن طرف می زنند، دانست. وقتی که دمای فلز افزایش می یابد، عامل سوم نیز افزایش می یابد بنابراین، وقتی که یک جسم به علت عبور جریان الکتریکی از آن گرم می شود، مانند رشته داخل حباب لامپ، مقاومتش افزایش می یابد. مقاومت یک جسم از معادله زیر بدست می آید:

(R = \frac{L}{A} \cdot \rho = \frac{L}{A} \cdot \rho_0 (\alpha (T - T_0) + 1

که در آن & مقاومت ویژه، Lطول جسم هادی، A مساحت سطح مقطع آن، T دمای جسم، T_0 یک دمای مرجع (معمولا دمای اتاق) و rho_0 و alpha ثابت های ویژه ماده جسم هادی اند.

آمپر متر چیست؟

لغت ammeter از کلمه amper مشتق شده است. توجه کنید که حرف P در کلمه amper حذف شده است و فقط دو حرف اول این کلمه در لغت ammeter بکار رفته است. ما نمی‌توانیم الکترونها یا پروتونها را دیده یا لمس کنیم. به همین دلیل نمی‌توانیم آنها را بشماریم. در نتیجه به ابزاری احتیاج داریم تا بتوانیم آنها را بشماریم. شدت روشنایی لامپ مشخصاتی از شدت جریان را به ما نشان می‌دهد، ولی دو نقص اصلی دارد. اول اینکه نمی‌تواند شدت جریان را در واحدی که به آسانی قابل یادداشت و مقایسه با اندازه گیری شدت جریان در محلها و زمانهای دیگر است، اندازه بگیرد. همچنین در شدت جریانهای معین می‌توان از آن استفاده کرد. اگر مقدار شدت جریان خیلی کم باشد، لامپ روشن نمی‌شود و اگر شدت جریان خیلی زیاد باشد، لامپ می‌سوزد. برای رفع نقص اول به ابزاری احتیاج داریم که به ما نشان دهد، چند آمپر (چند کولن الکترون در هر ثانیه) در مدار جریان دارد. دستگاه مخصوصی که این اندازه گیری را انجام می‌دهد، آمپرمتر (ammetr) نامیده می‌شود.

طرز کار آمپرمتر

آمپرمتر مقدار شدت جریانی را که از آن می‌گذرد، بوسیله یک عقربه که در روی صفحه درجه بندی شده حرکت می‌کند، نشان می‌دهد. میزان انحراف عقربه آمپرمتر با تعداد الکترونهایی که از این دستگاه می‌گذرند، نسبت مستقیم دارد. یعنی نشان می‌دهد که چه مقدار بار الکتریکی در ثانیه از آن عبور می‌کند.
طرز استفاده از آمپرمتر

آمپرمتر از خیلی جهات شبیه کنتور آب است که میزان آب مصرف شده منازل را اندازه می‌گیرد. هر دو دستگاه (آمپرمتر و کنتور آب) باید طوری در مدار قرار گیرند که جریانهای الکتریسیته و آب از آنها بگذرد، تا بتوان شدت جریان را اندازه گرفت. تمام آبی که از لوله اصلی وارد خانه می‌شود، باید از کنتور آب عبور کند. آمپرمتر نیز باید طوری قرار گیرد که تمام جریان الکتریسته از ان بگذرد، تا بتوان تمام شدت جریان الکتریکی را بوسیله آن اندازه گرفت. این نوع اتصال را اتصال متوالی یا سری می‌گویند. یعنی اجزا تشکیل دهنده مدار در یک خط مستقیم (یک مسیر هدایت کننده) به یکدیگر اتصال دارند.

مراحل قرار دادن آمپرمتر در مدار

برای قرار دادن آمپرمتر در مدار متوالی به ترتیب زیر عمل کنید.

1. نیروی خارجی را که به مدار وارد می‌شود، قطع کنید.

2. آن قسمت از مدار را که آمپرمتر در آن قرار دارد، باز کنید یا ببرید.

3. انتهای مثبت آمپرمتر را به سیمی که به قطب مثبت پیل می‌رود، وصل کنید.

4. انتهای منفی آمپرمتر را به سیمی که به قطب منفی پیل می‌رود، وصل کنید.

مراحل 4 , 3 (که عبارتند از انتقال مثبت به مثبت ، منفی به منفی) را دقت در پلاریته می‌نامند و این امر مهم است. زیرا دستگاه اندازه گیری آمپرمتر شدت جریان را در یک جهت نشان می‌دهد. اگر دستگاه اندازه گیری را بطور عکس در مدار قرار دهیم، چون جریان در جهت عکس (که مناسب آمپرمتر نیست) از آن می‌گذرد و انحراف عقربه بوجود می‌آید که باعث شکسته شدن یا خم شدن آن می‌گردد. فیش قرمز را به جک قرمز آمپرمتر و فیش سیاه را به جک سیاه در بالای آمپرمتر وصل کنید.

خطای دستگاه اندازه گیری (Meter Tolrances)

باید توجه داشت که در یک مدار معین آمپرمترهای مختلف ، اندازه شدت جریان را با کمی اختلاف نشان می‌دهند. این امر بدان دلیل است که مقداری از انرژی که در مدار جریان دارد، برای بکار انداختن آمپرمتر مصرف می‌شود و همه آمپرمترها هم یکسان نیستند. همچنین به علت اختلافی که در ساختمان آمپرمتر و تلف شدن انرژی وجود دارد، شدت جریانی را که در روی آمپرمتر می‌خوانید، تقریبی است. دستگاه اندازه گیری درست است که حدود خطای آن 0± در صد اندازه واقعی باشد. یعنی اگر شدت جریان اصلی 100 آمپر باشد، روی دستگاه آمپرمتر حدود 9 تا 10 آمپر را می‌خوانید.

بکار بردن آمپرمتر

1. یک آمپرمتر ساده را بردارید. در انتخاب دستگاه اندازه گیری دقت کنید که شدت جریان مدار نباید بیش از حد تعیین شده برای اندازه گیری باشد. زیرا آمپرمتر بر حسب درجه بندی خود ، شدت جریانهای معینی را می‌تواند اندازه بگیرد. در مورد این آزمایش می‌توانید فرض کنید که آمپرمتر دارای توانایی کافی برای اندازه گیری شدت جریان می‌باشد.

2. فیش قرمز را به جک قرمز و فیش سیاه را به جک سیاه وصل کنید.

3. مطمئن شوید که به مدار انرژی داده نمی‌شود. کلید مدار باید باز باشد (به خاطر حفظ جان خود هیچگاه سعی نکنید که آمپرمتر را در مداری که انرژی الکتریکی در آن جریان دارد قرار دهید).

4. با جدا کردن سیم رابط بین T2 و T1 مدار را باز کنید. با قرار گرفتن آمپرمتر بین این دو نقطه مدار کامل می‌شود.

5. با رعایت پلاریته ، فیش سیاه را به T1 و فیش قرمز را به T2 وصل کنید. اگر پلاریته مناسب در نظر گرفته نشود، عقربه آمپرمتر به طرف چپ منحرف شده و این عمل موجب خرابی دستگاه اندازه گیری خواهد شد.

6. کلید مدار را ببندید و درجه‌ای را که آمپرمتر نشان می‌دهد بخوانید. همیشه از روبرو به صفحه درجه بندی شده آمپرمتر نگاه کنید و هیچوقت تحت هیچ زاویه‌ای درجه آمپرمتر را نخوانید.

7. درجه‌ای را که خوانده‌اید، یادداشت کنید.

8. کلید مدار را باز کنید.

مقاومت

شاید شما نیز از دیدن این اشیاء ریز و رنگی ، داخل رادیو و وسایل دیگر شگفت‌زده شده باشید و بخواهید بدانید از چه جنسی هستند و به چه دردی می‌خورند؟

مقاومت ، یکی از المان‌های الکتریکی است که برای این طراحی شده است که در مدار یک مقاومت الکتریکی ( electrical resistance ) بوجود آورد . مقاومتها به گونه‌ای ساخته می‌شوند که بتوانند جریان عبوری از مدار را در حد مورد نیاز محدود کنند. دو نوع مقاومت وجود دارد:مقاومت های ثابت و متغیر .

(مقاومت)

  1. مقاومت های ثابت :
  2. الف- کربنی

ب- لایه ای :

° لایه ی کربنی

° لایه ی فلزی

° لایه ی اکسید فلز

ج- سیمی

  1. مقاومت های متغیر:

الف- قابل تنظیم :

° پتانسیومتر

° رئوستا

ب- وابسته «تابع:

°تابع حرارت :

  1. PTC
  2. NTC

° تابع نور LDR

° تابع ولتاژVDR

° تابع میدان مغناطیسی MDR

  1. تشخیص مقدار اهم مقاومت ها:

الف- کد های رنگی

ب- رمزهای عددی

ج- نوشتن مقدار مقاومت

  1. استاندارد های مقاومت

ولتاژ ،اختلاف پتانسیل و تولید برق

در علوم فیزیکی اختلاف پتانسیل اختلاف در پتانسیل بین دو نقطه در یک میدان برداری پایدار است. در مهندسی، این کمیت گاهاً به عنوان متغیرهای عرضی در برابر کمیت هایی مانند شار که متغیر عبوریاست، توصیف می شود.

تولید

نتیجه ی شار و اختلاف پتانسیل توان است که نرخ تغییرات کمیت پایدار انرژی است. در مایعات، اختلاف پتانسیل اختلاف در فشار است. در سیستم های دمایی اختلاف پتانسیل اختلاف در دما است. در مکانیک، اختلاف پتانسیل، اختلاف در پتانسیل گرانشی بین دو نقطه است. در مهندسی برق، اختلاف پتانسیل ولتاژ است، یعنی اختلاف بین نقاط ابتدایی و انتهایی یک پتانسیل الکترواستاتیک.

تعاریف الکتریکی

یک اختلاف پتانسیل بین دو نقطه منجر به ایجاد یک نیرو می شود که یک نیروی الکتروموتیو یا emf خوانده می شود. این نیرو مایل است تا الکترون ها یا دیگر بارهای حامل را از یک نقطه به نقطه دیگر انتقال دهد. اگر یک هادی الکتریکی در یک میدان مغناطیسی به صورت عمود بر میدان حرکت کند، بین دو سرش یک اختلاف پتانسیل ایجاد می شود. اختلاف پتانسیل بین دو نقطه یک مدار الکتریکی برابر اختلاف در پتانسیل های الکتریکی آن دو نقطه تعریف می شود. اختلاف پتانسیل به صورت مقدارکار انجام شده برای انتقال واحد بار الکتریکی از نقطه دوم به نقطه اول یا به طور برابر، مقدار کاری که واحد بار می تواند در انتقال از نقطه اول به نقطه دوم انجام دهد، است. در سیستم واحد های ««SI، اختلاف پتانسیل، پتانسیل الکتریکی و نیروی الکتروموتیو توسط ««ولت که نشان دهنده واژه معروف ولتاژ و نماد V است، اندازه گیری می شود. یک ولت که پس از الساندور ولتا نامگذاری شد، به صورت یک ژول از انرژی برای انجام کار روی یک کلمب از بار تعریف شده است. اختلاف پتانسیل بین دو نقطه a و b انتگرال خط میدان الکتریکی "E" است:

Va-
اگر یک مدار الکتریکی را به یک چرخه آب در یک شبکه لوله ها که در غیاب جاذبه زمین توسط پمپ ها به گردش در می آید، تشبیه کنیم، آنگاه اختلاف پتانسیل معادل فشار بین دو نقطه است. اگر اختلاف پتانسیلی بین دو نقطه وجود داشته باشد، آنگاه جریان آب از نقطه اول به نقطه دوم قادر به انجام کار خواهد بود، همانند راه اندازی یک توربین. ولتاژ دارای خاصیت جمع پذیری است، یعنی ولتاژ بین A و C برابر ولتاژ بین A و B به علاوه ولتاژ بین B و C است. دو نقطه در یک مدار الکتریکی که توسط یک هادی (ایده آل) بدون مقاومت به هم متصل شده اند، دارای اختلاف پتانسیل صفر خواهند بود. اما با این وجود بین دیگر نقاط هم ممکن است که اختلاف پتانسیل صفر وجود داشته باشد. اگر چنین نقاطی را توسط یک هادی به هم متصل کنیم جریانی عبور نخواهد کرد. ولتاژهای مختلف در یک مدار را می توانیم توسط قانون مداری کیرشهف محاسبه کنیم.

تجهیزات برقی

منابع عمومی تولید emf باتری«الکتریسته»/باتری، ژنراتور الکتریکی و خازن ها هستند.
تجهیزات اندازه گیری اختلاف پتانسیل شامل ولتمتر، پتانسیومتر (تجهیزات اندازه گیری) و اسیلوسکوپ هستند. ولتمتر توسط اندازه گیری جریان عبوری از یک مقاومت ثابت که بر طبق قانون اهم متناسب با اختلاف پتانسیل دو سر این مقاومت است، کار می کند. پتانسیومتر توسط مقایسه ولتاژ مجهول با یک ولتاژ معلوم در یک پل مداری کار می کند.
اسیلوسکوپ اشعه کاتدی توسط تقویت اختلاف پتانسیل و بکار بردنش برای منحرف کردن یک شعاع الکترون از یک مسیر مستقیم کار می کند، در این صورت انحراف اشعه متناسب با اختلاف پتانسیل خواهد بود.

تاریخچه تولید جریان الکتریسیته

در تاریخ 1800 م در پی یک اختلاف حرفه ای بر سر واکنش گالوانیکی که از سوی لوییجی گالوانی حمایت می شد، الساندور ولتا پیل ولتایی خود را که مقدمه ابداع باتری بود، اختراع کرد که این پیل جریان الکتریکی پایداری را ایجاد می کرد. ولتا کشف کرده بود که موثرترین جفت فلز متفاوتی که جریان الکتریسته ایجاد می کنند، روی و نقره اند.
در دهه 1800 م کنگره بین المللی الکتریکی که الان به نام کمیسیون بین المللی الکترونیکی (IEC) معروف است، ولت را برای نیروی الکتروموتیو تصویب کرد. ولت به صورت اختلاف پتانسیل یک هادی وقتی که یک جریان یک آمپر توان یک وات را ایجاد می کند، تعریف شد.

تولید الکتریسته

تولید الکتریسیته اولین فرایند در ارائه الکتریسیته به مصرف کننده هاست. سه فرایند دیگر انتقال توان الکتریکی، توزیع الکتریسیته و فروش الکتریسیته است. اهمیت تولید الکتریسیته، انتقال و توزیع آن زمانی کشف شد که معلوم شد الکتریسیته برای تهیه گرما، روشنایی و توان مورد نیاز برای دیگر فعالیت های انسانی، مفید است. تولید الکتریسیته غیر متمرکز نیز زمانی ممکن شد که کارشناسان فهمیدند خطوط برق جریان متناوب می توانند الکتریسیته را با قیمت ارزان در طول فواصل بلند و توسط بهره برداری از مزیت قابلیت تبدیل ولتاژ با استفاده از ترانسفورماتورهای توان، انتقال دهند. برای مدت 120 سال، الکتریسیته از منابع مختلف انرژی پتانسیل و به منظور فراهم آوردن انرژی فن آوری های بشر، تولید می شده است. اولین نیروگاه برق توسط چوب راه اندازی شد، در حالی که امروزه نیروگاه ها با نفت، گاز طبیعی، زغال سنگ، سیستم برق آبی و انرژی هسته ای و به میزان کمی با هیدروژن، انرژی خورشیدی، کنترل جزر و مد و ژنراتورهای بادی کار می کنند. تولید و توزیع الکتریسیته اغلب در دستان بخش خصوصی یا دولتی که خدمات رفاهی عمومی را در اختیار دارند، بوده است. در سالهای اخیر برخی دولت ها به عنوان بخشی از حرکتی برای اعمال فشار بازار به حقوق انحصاری، شروع به خصوصی سازی یا شرکتی کردن این خدمات رفاهی کرده اند. بازار الکتریسیته نیوزیلند مثالی از این نوع است. تقاضای الکتریسیته را می توان به دو صورت ارضاء کرد. روش اول که تا کنون برای خدمات رفاهی به کار می رفته است، ساختن پروژه های بزرگ تولید و ارسال الکتریسیته لازم به اقتصادهای سوختی در حال رشد، است. بسیاری از این پروژه ها دارای تاثیرات زیست محیطی نامطلوب نظیر آلودگی هوا یا آلودگی تشعشعی و آب گرفتگی بخش وسیعی از زمین، هستند. تولید پراکنده به عنوان روش جدیدی (روش دوم) برای برطرف کردن تقاضای الکتریکی، در نزدیکی مصرف کننده ها شناخته شده است. پروژه های کوچک تر پراکنده دارای خصوصیات زیر هستند:

ـ حفاظت در برابر خاموشی های برق ناشی از متوقف کردن نیروگاه های غیر متمرکز یا خطوط انتقال به منظور تعمیر، فریب بازار یا توقفهای اضطراری.

ـ کاهش آلودگی.

ـ اجازه دادن به بازیگران کوچک تر برای ورود به بازارهای انرژی.

روش های تبدیل توان های دیگر به توان الکتریکی

توربین های دوار که به ژنراتورهای الکتریکی متصل شده اند، اکثر الکتریسیته تجاری موجود را تولید می کنند. توربین ها عموماً توسط بخار، آب، باد یا دیگر مایعات به عنوان یک واسطه حامل انرژی، گردانده می شوند. پیل های سوختی که برای تولید الکتریسیته از مواد شیمیایی مختلفی استفاده می کنند، توسط برخی از مردم مناسب ترین منبع برق برای بلند مدت شناخته می شوند، خصوصاً اگر بتوان از هیدروژن به عنوان ماده تغذیه در این پیل ها استفاده کرد. اما به هرحال هیدروژن معمولاً تنها یک حامل انرژی است و بایستی توسط منابع توان دیگری ایجاد شود. ژنراتورهای کوچک قابل حمل نیز عموماً توسط موتورهای دیزل کار می کنند که خصوصاً در کشتی ها، مکان های مسکونی دور افتاده و برق اضطراری استفاده می شوند.

منابع انرژی اولیه، بکار رفته در تولید برق

جهان امروز برای تولید انرژی بر زغال سنگ و گاز طبیعی تکیه می کند. هزینه های بالای مورد نیاز برای انرژی هسته ای و ترس از خطرات این انرژی، از دهه 1970م جلوی تاسیس نیروگاه های جدید هسته ای را در آمریکای شمالی گرفته است. توربین های بخار را می توان توسط بخارهای ناشی از منابع زمین گرمایی، انرژی خورشیدی، مایعات، سوخت های فسیلی گازی و جامد، به راه انداخت. راکتورهای هسته ای از انرژی ناشی از شکافت اورانیوم یا پلوتونیوم رادیواکتیو برای تولید آزمایش‌های مربوط به گرما استفاده می کنند. این راکتورها اغلب از دو مدار بخار اولیه و ثانویه تشکیل شده تا یک لایه حفاظتی اضافی را بین محل قرار گرفتن سوخت هسته ای و اتاق ژنراتور قرار دهد. نیروگاه های برق آبی از آبی که مستقیماً از توربین ها عبور می کند، برای راه اندازی ژنراتورها استفاده می کنند. کنترل جزر و مد از نیروی ماه بر روی بدنه آب دریاها برای گرداندن یک توربین استفاده می کنند. ژنراتورهای بادی از باد برای گرداندن توربین هایی که با یک ژنراتور مرتبط اند، استفاده می کنند. یروگاه برق آبی ذخیره شده با پمپ برای هم سطح کردن تقاضاها روی یک شبکه برق به کار می رود. تولید الکتریسیته توسط هم جوشی آزمایش‌های مربوط به گرما هسته ای به عنوان راه حلی ممکن برای تولید الکتریسیته پیشنهاد شده است. در حال حاضر برخی موانع فنی و مسایل زیست محیطی در مسیر این راه وجود دارد که اگر برطرف شوند هم جوشی، یک منبع انرژی الکتریکی نسبتاً تمیز و بی خطر را تامین خواهد کرد. پیش بینی می شود که یک راکتور آزمایشی بزرگ «ITER) در سال 2005-2006 شروع به کار کند.

بهبود کارایی برق و گرمای ترکیب شده

نیروگاه های تولید مختلط «برق و گرمای ترکیب شده)، با استفاده از برق خورشیدی، سوخت های فسیلی، گازهای سنتزی، تراکم زیست یا زیست گاز به عنوان یک منبع سوختی، تولید الکتریسیته و آزمایش‌های مربوط به گرما را انجام می دهند. این نیروگاه ها می توانند به کارایی به میزان 80 درصد برسند اما انتظار می رود بسیاری از این نیروگاه ها که امروزه ساخته می شوند تنها به کارایی معادل حداکثر 55 درصد برسند. بخار گرم شده یک توربین را می گرداند و سپس گرمای اضافی برای گرم کردن فضاهای داخل ساختمان ها، فرآیندهای صنعتی یا گرم کردن گلخانه ها بکار می رود. تمامی مردم می توانند از گرمای توزیع شده از طریق یک طرح گرمایی منطقه ای بهره ببرند. توانایی دستیابی به تولید سه گانه با استفاده از سوخت های فسیلی یا انرژی خورشیدی برای تولید گرما، الکتریسیته و سرمایش تبخیری نیز وجود دارد. این نیروگاه های ترکیبی بهترین نسبت تبدیل انرژی را بعد از نیروگاه های برق آبی دارند. آرایه های کوچک فتو ولتایی، آسیاب های بادی و دوچرخه های مرتبط با یک توربین، همگی می توانند برای تولید الکتریسیته قابل حمل بکار برد. اصلاحات الکتریکی در سرتاسر جهان در حال جدا کردن تولید الکتریسیته از مبانی کنترل شده حق انحصار انتقال و توزیع الکتریسیته است، بازار الکتریسیته را مشاهده کنید.