دسته بندی | الکترونیک و مخابرات |
فرمت فایل | doc |
حجم فایل | 37 کیلو بایت |
تعداد صفحات فایل | 55 |
اصولاً قسمتهای عایق ماشینهای الکتریکی ، ترانسفورماتور ها ،خطوط هوایی و غیره به صورتی طراحی می شود که بتوانند به طور مداوم تحت ولتاژ معینی کارکرده و ضمناً قدرت تحمل ضربه های ولتاژ را در لحظات کوتاه داشته باشند .
هر نوع تغییرات ناگهانی و شدید در شرایط کاری شبکه، موجب ظهور جهشها یا پالسهای ولتاژ می شود . برای مثالمی توان اضافه ولتاژ های ناشی از قطع و یا وصل بارهای زیاد به طور یکجا ، جریانهای اتصال کوتاه ، تغییر ناگهانی مدار و غیره رانام برد .
رعد و برق نیز هنگامی که روی خطوط شبکه تخلیه شود ، باعث ایجاد پالسهای فشار قوی با دامنه زیاد و زمان کم می شود .
لذا عایق های موجوددر ماشینهای الکتریکی و تجهیزات فشار قوی باید از نظر استقامت در مقابل این نوع پالسها نیز طبقه بندی شده و مشخص شوند . عایقهای الکتریکی با گذشت زمان نیز در اثر آلودگی و جذب رطوبت فاسد شده و خاصیت خود را از دست می دهند .
در مهندسی برق سطوح مختلفی از مقاومت عایقی تعریف شده است که هر کدام بایستی در مقابل ولتاژ معینی استقامت نمایند . (ولتاژ دائمی و ولتاژ لحظه ای هر کدام به طور جداگانه مشخص می شوند )و البته طبیعی است که ازدیاد ولتاژ بیشتر از حد مجاز روی عایق باعث شکست آن می شود . در عمل دو نوع شکست برای عایق ها می توان باز شناخت ،حرارتی و الکتریکی .
زمانی که عایق تحت ولتاژ قرار دارد ، حرارت ناشی از تلفات دی الکتریکی می توان باعث شکست حرارتی شود . باید توجه نمود که افزایش درجه حرارت باعث کاهش مقاومت اهمی عایق و نتیجتاً افزایش تصاعدی درجه حرارت آن خواهد شد .
خلاصه اینکه عدم توازن بین حرارت ایجاد شده در عایق با انچه که به محیط اطراف دفع می نماید ، موجب افزایش درجه حرارت آن شده و این پروسه تا زمانیکه عایق کاملاً شکسته شده و به یک هادی الکتریسته در آید ، ادامه می باید .
شکست الکتریکی در عایق ها به دلیل تجزیه ذرات ان در اثر اعمال میدان الکتریکی نیز صورت می گیرد .
با توجه به آنچه گذشت ، عایقهای الکتریکی عموماً در معرض عواملی قرار دارند که باعث می شود در ولتاژ نامی نیز حالت نرمال خود را از دست بدهند . لذا در انتخاب عایقها ، عایق با کلاس بالاتر انتخاب می شود . اندازه گیریهای مختلفی که جهت شناسایی نواقص موجود در عایق ها انجام می گیرند عبارتند از :
اندازه گیری مقاومت D.C عایق یا جریان نشتی ان ، تلفات دی الکتریک ، ظرفیت خازنی عایق ، توزیع ولتاژ در عایق ، دشارژهای جزئی در عایق و میزان پارازیتهای حاصل از آن و تست استقامت الکتریکی عایق .
تعیین میزان و تلفات یک عایق ومقایسه آن با مقادیر اولیه ، معیار خوبی برای ارزیابی وضعیت آن می باشد . اصولاً افزایش تلفات در عایق های جامد ناشی از جذب رطوبت و در روغن ها به دلیل افزایش در صد آب یا آلودگیهای دیگر درآن می باشد .
باید دانست که مقدار تلفاتی که در مورد یک ترانس اندازه گیری می شود ، جمع تلفات روغن و ایزولاسیونجامد سیم پیچ بوده و هرگاه تلفات عایق یک ترانس از مقدار مجاز تجاوز نماید ، ابتدا باید روغن را به طور جداگانه مورد آزمایش قرار داد تا بتوان وضعیت ایزولاسیون سیم پیچی را ارزیابی نمود .
با توجه به انکه با تعیین مقدار تلفات به طور مطلق و بدون در نظر گرفتن ابعاد فیزیکی و جنس عایق نمی توان قضاوت صحیحی در مورد ان به عمل آورد ، بهترین پارامتری که می تواند وضعیت ایزولاسیون را مشخص نماید نسبت مولفه اکتیو به راکتیو جریان نشتی عایق می باشد . با اندازه گیری ظرفیت تلفات عایق می توان وضعیت ان را از نظر استقامت حرارتی ، میزان رطوبت جذب شده و عمر عایق ارزیابی نمود .
تجربه نشان داده است که در موارد زیر خطر اتصال کوتاه در ایزولاسیون تجهیزات الکتریکی که مستقیماً به فساد عایق مربوط باشد ، وجود ندارد :
الف : وقتیکه ایزولاسیون دارای ضریب تلفات عایق ثابتی است و با مروز زمان افزایش نمی یابد .
ب: وقتیکه ضریب تلفات عایق روغن بوشینگ دژنکتورهای روغنی که مستقیماً روی کلید اندازه گیری شده است ، بدون توجه به اندازه گیری قبلی در حد استاندارد باشد .
با اندازه گیری ظرفیت خازنی ایزولاسیون تجهیزات الکتریکی در دوفرکانس و یا دو درجه حرارت مختلف می توان اطلاعاتی مشابه با نتیجه تست تلفات دی الکتریک از وضعیت عایق بدست آورد .
وجه تمایز تست ظرفیت خازنی در دو فرکانس مختلف با دستگاههایی که جهت همین کار ساخته شده اند در این است که در هر درجه حرارتی قابل انجام بوده و احتیاجی به گرم کردن ترانس و یا تجهیزات دیگر نیست و به همین جهت پرسنل را از حمل و نقل دستگاهها و ادوات نسبتاً سنگین که برای گرمایش بکار می روند بی نیاز می سازد.
در این روش اساس کار بر این اصل مبتنی است که ظرفیت خازن با تغییر فرکانس تغییر می نماید . تجربه نشان داده است که در مورد ایزولاسیون سیم پیچ هایی که آب زیادی به خود جذب نموده اند نسبت بین ظرفیت خازنی در فرکانسهای 2 و 50 هرتز حدود دو بوده و در مورد ایزولاسیون خشک این نسبت حدود یک خواهد بود .
اندازه گیری فوق معمولاً بین سیم پیچ هر یک از فازها و بدنه در حالتیکه بقیه سیم پیچ ها نیز ارت شده اند انجام می گیرد . دقیقترین روش برای بررسی نتایج بدست امده در هر آزمایش مقایسه آن با مقادیر کارخانهای و یا تستای مشابه قبلی می باشد که البته در این عمل باید ارقام بر اساس یک درجه حرارت واحد اصلاح شد باشند . چنانچه مقایسه فوق به عللی تحقیق پذیر نباشد ، می توان به بعضی از اتسانداردهایی که در این زمینه موجود است مراجعه نمود . برای مثال پس از انجام تعمیرات ، میزان مقاومت D.C عایق نباید کاهش بیش از 40 در صد (برای ترانس 110 کیلو ولت به بالا 30 در صد ) ، نسبت ظرفیت خازن در فرکانس 2 هرتز به ظرفیت خازن در فرکانس 50 هرتز افزایش بیش از ده درصد و ضریب تلفات عایق افزایش بیش از 30 در صد نسبت به نتایج قبل از تعمیرات را نشان بدهند .
دردرجه حرارتهای 10 و 20 درجه سانتیگراد نسبت ظرفیت خازن در فرکانس 2 هرتز به ظرفیت خازن در فرکانس 50 هرتز باید به ترتیب مقادیری حدود 2/1 و 3/1 را داشته باشند.
اضافه گرمایش مجاز در هادیهای تجهیزات الکتریکی
روشن است که عبور جریان نامی به طور مداوئم در هادیهای الکتریکی موجب گر شدن آنها و ایزولاسیون مجاورشان می شوند . این پدیده عاملی است که محدودیت اساسی را برای باردهی تجهیزات الکتریکی بوجود می آورد .
بر اساس استاندارد های معتبر ، حداکثر درجه حرارت مجاز در انواع مواد عایقی بین 90 تا 180 درجه سانتیگراد معین شده است .
درمورادی که قسمتهای حامل جریان و یا قطعات فلزی بدون جریان تجهیزات ، در تمای با عایق ها نباشند ، اضافه دماهای زیادتری مجاز دانسته شده است . در مورد هر ماشین الکتریکی ، حد مجاز برای افزایش درجه محیط تعیین می شود که اصولاً به نوع مواد عایقی موجود در آن بستگی دارد ولی به خاطر پاراکترهای مختلفی که در این زمینه دخالت دارند درجه حرارت مجاز از طریق آزمایشهای ویژه ای که در شرایط بار نامی صورت می گیرد مشخص می شود .
در ماشینهای الکتریکی که با گازها خنک کی شوند ،جریان نامی بر اساس ماکزیمم حرارتی که گاز خنک کننده قادر به دفع آن است تعیین می شود و اصولاً بکارانداختن ماشین در شرایطی خارج از محدوده فوق به جز دو موارد استثنایی که می توان ان را برای مدت کوتاهی تحت اضافه بار قرار داد به هیچ وجه مجاز نمی باشد .
لازم به ذکر است که شرایط اضافه بار معمولاً در مدارک فنی ماشین ثبت شده است . درجه حرارت مجاز در مورد ترانسفورماتورها بر این اساس مشخص می شود که ایزولاسیون سیم پیچها باید 20 تا 25 سال عمر مفید داشته باشد ،بدین منظور درمناطقی که درجه حرارت محیط به 35 درجه سانتیگراد می رسد ، اضافه سیم پیچهای ترانس (اضافه بر دمای محیط ) نباید از 70 درجه سانتیگراد تجاوز نماید . (غالباً ترانس ها را برای کار در شرایط 35 درجه سانتیگراد حرارت می سازند .)
بنابراین ماکزیمم دمای مجاز سیمپیچ ترانس برای کار دائم دراین مناطق عبارت است از 105 درجه سانتیگراد .
در این شرایط می توان ترانس را به طور مداوم تحت بار نامی قرار داد ،بدون انکه کاهشی درعمرمفید آن بوجود آید .
لازم ه ذکر است که یک عایق وقتی تحت دمای مجاز کارکند، قادر به ارائه عمر مفید خود بوده و به همان نسبتی که در دمای افزون بر حد مجاز قرار گیرد (چه از نظر حرارت و چه از نظرزمان ) از عمر مفید آن کاسته خواهد شد .
با توجه به این مطلب و همچنین با توجه به اینکه عملاً درجع رحارت محیط هم در طول روز و هم در طول سال تغییر مینماید ، عمر ایزولاسیون و در نتیجه عمر مفید ترانس بستگی به درجه حرارت میانگین سالیانه محیط و نوع بهره برداری از ترانس خواهد داشت . در استاندارد های معتبر دمای ماکزیمم مجاز برای ترانسهای قدرت با توجه به تغییرات روزانه دما و ماینگین درجه حرارت سالیانه محیط تدوین شده است . به علاوه همین استانداردها ماکزیمم افزایش درجه حرارت مجاز برای لایه بالایی روغن در مخزن ترانس نسبت به دمای محیط را نیز 60 درجه سانتیگراد تعیین نموده است . بنابراین اگر دمای محیط 35 درجه سانتیگارد باشد ، ماکزیمم دمای مجاز روغن (که توسط ترمومتر در بالای ترانس اندازه گیری می شود ) عبارت است از 95 درجه سانتیگراد .
با این درجه حارت روغن و شرایط محیط عملاً سیم پیچ ها تا 105 درجه سانتیگراد گرم می شوند . البته 95 درجه سانتیگراد حرارت روغن مربوط به ترانس هایی است که با سیستم روغن تحت سیرکولاسیون (به کمک پمپ) وهوای تحت فشار (OFAF) خنک می شوند .
دمای هوای خنک کننده در مورد ماشینهای الکتریکی مستقیماً درمحلهای ورود و خروج هوا اندازه گیری می شود .
این ماشینها مجهز به ترمومترهای جیوه ای روی ماشین و یا دماسنجهایی ترمورزیستوری هستند که ترمورییستورهای مربوط در جلوی فن در دو طرف ماشین جا سازی می شود . در ماشینهایی که با گاز هیدورژن خنک می شوند درجه حارت گاز به عنوان یک قاعده مورد توافق در مهندسی برق توسط ترموریزستوری که در مسیر جریان هیدروژن سرد به داخل ماشین قرار دارد ، اندازه گیری می شود .
ماشینهای کوچکی که با فن سر خود خنک کی شوند نیز مجهز به ترمومتر هستند .
برای به حداقل رساندن تلفات حرارتی در یاتاقانها و پیشگیری از صدمه دیدن یا به اصطلاح یاتاقان زدن ،درجه حرارت روغن و پوسته یاتاقان ماشینهای الکتریکی باید مورد کنترلدقیق و مداوم قرار گیرد . یکی از مشخصات اصلی روغنی که در یاتاقانها بکار می رود چسبندگی آن است که به شدت با درجه حرارت تغییر می کند . لذا دمای این روغنها باید بین 40 تا 80 درجه سانتیگراد باشد . در مناطقی که میانگین درجه حرارت روزانه محیط کمتر از 35 درجه سانتیگراد است ، می توان میزان بار تجهیزات الکتریکی را تا 20 در صد افزایش داد ، ولی باید توجه داشت که به هر حال دمای قسمتهای مختلف آن از مقادیری که درجدول 2 مشخص شده است تجاوز ننماید .
البته در این موارد بایستی میزان اضافه بار مجاز در دستورالعمل های کتبی در اختیار اپراتور قرارگیرد . بر عکس در مناطقی نیز که درجه حرارت محیط از 35 درجه سانتیگراد بالاتر می رود ، باید بار نامی طبق دستورالعمل کارخانه سازنده کاهش داده شود .
ژنراتورهای سنکرون
تغییرات ولتاژ در ترمینالهای ژنراتور های سنکرون به میزان 5/0 +تثیری درقدرت نامی نخواه داشت ،ولی در صورتیکه همین تغییرات از 5 % تجاوز نماید جریان بار را نیز باید برای هر حالت خاص در مقداری که به کمک تست و یا محاسبه قابل حصول است معین نمود ، البته در هر حال نباید قدرت خروجی بیش از مقدار نامی شود .
افزایش بیش از 5% در ولتاژ ماشین موجب افزایش تلفات آهنی و نتیجتاً افزایش درجه حرارت خواهد شد که برای پیشگیری از آن باید بار خروجی را به میزان مناسب کاهش داد و نیز اگر ولتاژ نامی از ترمینالهای ژنراتور بیش از 5% کاهش یابد ، می توان با افزودن جریان بار (جریان استاتور)قدرت ظاهری ماشین را به مقدار نامی نزدیک نمود .
ولی به هر حال باید توجه داشت که اضافه جریان مجاز در استاتور فقط 5% و اضافه ولتاژ مجاز فقط 10% مقدار نامی باشد . ژنراتورها عموماً برای کار در ولتاژهای 15/3 ، 3/6 ، 5/10 ، 8/13 ، 75/15 ، 18 . 20 . 24 کیلو ولت و ضریب توان های 8/0 . 85/0 ، 9/0 و درجه حرارت مایع و یا گاز خنک کننده در 40 درجه سانتیگراد ساخته می شوند . (کندانسورها فقط با ولتاژهای 3/6 . 75/15 کیلو ولت طراحی می شوند ).
البته روشن است که ولتاژهای کم برای ماشینهای با ظرفیت کمتر و ولتاژهای بالا برای ماشینهای با ظرفیت بالاتر انتخابمی شوند .
برای ازولاسیون سیم پیچ استاتور ژنراتورها معمولاً عایق کلاس B به کار می رود که از جنس میکل بوده و روی ان با قیر معدنی و کاغذهای مخصوص باضریب هدایت بالا آغشته به گلسیرین فتالیت پوشانده می شود .
در عمل ابتدا سیم پیچ را تحت شرایط خلاء کاملاً خشک و گرم کرده و سپس عایق داغ را روی آن تزریق می نمایند . امروزه در ماشینهای مدرن و با ظرفیت بالا از ایزولاسیون مقاومتریکه عمدتاً از رزین (اپوکسی) تشکیل شده و در دمای 150 تا 160 درجه سانتیگراد کاملاً بهصورت منجمد باقی می ماند استفاده می کنند . برتری این نوع ایزولاسیون رد این است که در اضافه دمای شرایط کاری استحکام خود را از دست نمی دهد .
برای پیشگری از ایجاد پدیده کرونا درماشینهای با ولتاژ 10 کیلو ولت به بالا معمولاً روی عایق بین باسبارها و شیار استاتوررا با لایه ای از ماده نیمه هادی (فروس آسبست و غیره) می پوشانند . برای سیم پیچ روتور نیز غالباً از عایق کلاس B که با استفاده از عملیات حرارتی در محل فرم می گیرد استفاده می شود . برای این منظور ، ابتدا هادیها را با مکانیک سخت غلافی شکل می پوشانند و روی ان را با شارلاک و یا گلسیرین فتالیت مالیده و مجموعه رادر حالیکه تحت فشار قرار دارد به روش الکتریکی گرم می نمایند . بدین ترتیب ماده یکنواختی بوجود می آید .
کنترل درجه حرارت قسمتهای مختلف ژنراتورها از اهمیت ویژه ای برخوردار است . در این رابطه باید نکات زیر را مورد توجه قرار داد :
الف ) دمای سیم پیچ استاتور به کمک ترمورزیستوری که بین باسبارها در شیار و یا در سربندی کلافها قرار دارد ، اندازه گیری شده و دمای بدنه استاتور نیز توسط ترمورزیستور واقع در کف شیار کنترل می شود . دمای سیم پیچ روتور نیز به کمک تست مقاومت اهمی سیم پیچ مشخص می گردد .
ب ) درجه حرارت سیم پیچ استاتور و روتور نباید به ترتیب از مقادیر120و 130 درجه سانتیگراد تجاوز نماید و به تعبیر دیگر افزایش دمای مجاز برای قسمتهای فوق نسبت به دمای نرمال یک گاز خنک کننده (40 درجه سانتیگراد ) به ترتیب 80 و 90 درجه سانتیگراد می باشد . اگر در ایزولاسیون سیم پیچ استاتور ترکیباتی از قیر بکار رفته باشد ، ماکزیمم درجه حرارت مجاز به 105 درجه سانتیگراد کاهس می یابد .
سیستم تحریک ژنراتورها معمولاً به صورتی طراحی می شود که بتواند برای مدت کوتاهی ولتاژ خود را به 3/1 تا 5/3 برابر مقدار نامی افزایش دهد . این شرایط برای لحظاتی که شبکه تحت اتصال کوتاه قرار دارد مورد نیاز می باشد . علاوه براین سیسصتم تحریک باید مجهز به کنترل اتوماتیک باشد تا ولتاژ ترمینالهای ژنراتور را علی رغم تغییرات سطح ولتاژ ، میزان بار و ضریب توان درشبکه قدرت به طور اتوماتیک در مقادیر مورد نظرتثبیت نماید . امروزه کلیه ماشینهای سنکرون مدرن دارای سیستم ویژه ای جهت کنترل اتوماتیک تحریک می باشند .
این سیستم باید به طور مداوم وصل بوده و به هیچ وجه حتی در موقع قطع و یا زمان راه اندازی ماشین نیز نباید آن را از مدار خارج نمود و پرسنل بهره بردار برای انجام کارهای خود حق ایجاد هیچگونه تغییر و یا اختلالی در این سیستم را ندارد . در خلال اتصال کوتاههایی که در شبکه قدرترخ می دهد معمولاً افت ولتاژ شدیدی بروز می نماید . در چنین حالتی ژنراتورهاباید با افزایش سریع در نیروی الکتروموتوری خود ضمن تثبیت ولتاژ در ترمینالهای ژنراتور بار راکتیو مورد نیاز شبکه را تامین نموده ومانع پیدایش عدم تعادل در ان بشوند .
این عمل به طور اتوماتیک و توسط سیستمی موسوم به سیستم فورسینگ صوت می گیرد که ولتاژ اکسایتر را به طور آنی تا مقدار ماکزیمم خود افزایش می دهد . البته این اضافه بار برای ژنراتور و سیستم تحریک آن بیش از یک دقیقه قابل تحمل نبوده و پس از ان ماشین به طور اتوماتیک به وضعیت نرمال خود برگشت خواهد نمود .
راه اندازی مجدد موتورها پس از برگشت ولتاژ
در موارد زیادی ممکن است ولتاژ شبکه به طورموقت افت نموده و یا کاملاً قطع و مجدداً به حالت اولیه برگشتنماید . در چنین حالتی سرعت موتورهای الکتریکی نیز تناسب به حالت اولیه برگشت نماید . در چنین حالتی سرعت موتورهای الکتریکی نیز متناسب با افت ولتاژ کاهش خواهد یافت . اصولاً مدتی که از زمان قطع ولتاژ از روییک موتور تا ایستادن کامل آن به طول می انجامد ، به پریود استپ موتور شهرت داشته و در مورد مکانیزمهای مختلف ممکن است از چند ثانیه تا چند ده ثانیه طول بکشد . اگر مدت زمان کاهش ولتاژ و یا قطع موقت برق شبکه از تاخیر زمانی رله های حفاظت ولتاژ پایین باس کمتر باشد ، در این خلال مدار موتور قطع نشده و پس از برگشت ولتاژ به حالت اولیه پدیده ای که اصطلاحاً به راه اندازی مجدد موسوم است به وقوع می پیوندد . بدینترتیب هر چه فاصله زمانی کاهش ولتاژ کوتاهتر باشد به همان میزان نیز راه اندازی مجدد راحتتر صورت می گیرد . د رراه اندازی مجدد نیز جریان مصرفی سیستم چند برابر مقدار نامی می شود که در اینصورت اگر کلیه موتورهای منشعب از یک باس بخواهند همگی با هم از حالت قطع راه اندازی مجدد شوند، جریان مصرفی به اندازه مجموع جریانهای راه اندازی موتورها بوده و افت ولتاژ شدیدی را ایجاد می کندکه باعث تحریک رله های اضافه بار شده و عمل راه اندازی را غیرممکن می سازد. لذا اگر راه اندازی جمعی موتورها غیر قابل انجام باشد ،باید تدابیری اندیشید که ابتدا موتورهایی که نقش حیاتی دارند راه اندازی شوند و سپس بقیه مصرف کننده ها بکار بیفتند.
موتورهای اصلی واحد معمولاً به کمک حفاظت ولتاژ کم که عموماً در 30 در صد افت ولتاژ و یا تاخیر یک تا دو ثانیه عمل می کند از شبکه جدا می شوند.
زمان لازم برای عملکرد خود رله های حفاظتی نیز مجموعاً حدود 5/0 ثانیه است . بنابراین در تعویض با سبارها موقعی می توان از راه اندازی مجدد الکتروموتورهای اساسی واحد اطمینان حاصل نمود که مدت عمل تعویض از 5/2 ثانیه تجاوز ننماید .
به هر حال عدم استفاده از راه اندازی مجدد الکتروموتورها موجب بروزاختلالات پی در پی در پروسه تولید واحد می شود .
لازم به ذکر است که در مکانیزمهایی که با ممان اینرسی ثابت کار می کنند کاهش ولتاژ موتور تا 80 در صد و در مورد پمپها و فنها تا 65 در صد مقدار نامی نیز برای مدت محدودی اشکال اساسی در ادامه کار سیستم بوجود آورد .