فایل بای | FileBuy

مرجع خرید و دانلود گزارش کار آموزی ، گزارشکار آزمایشگاه ، مقاله ، تحقیق ، پروژه و پایان نامه های کلیه رشته های دانشگاهی

فایل بای | FileBuy

مرجع خرید و دانلود گزارش کار آموزی ، گزارشکار آزمایشگاه ، مقاله ، تحقیق ، پروژه و پایان نامه های کلیه رشته های دانشگاهی

پاورپوینت بررسی خاک مسلح

پاورپوینت بررسی خاک مسلح در 35 اسلاید زیبا و قابل ویرایش با فرمت pptx
دسته بندی کشاورزی و زراعت
بازدید ها 1
فرمت فایل pptx
حجم فایل 548 کیلو بایت
تعداد صفحات فایل 35
پاورپوینت بررسی خاک مسلح

فروشنده فایل

کد کاربری 7466
کاربر

پاورپوینت خاک مسلح در 35 اسلاید زیبا و قابل ویرایش با فرمت pptx

مقدمه

ابداع خاک مسلح توسط هانی ویدال در سال 1963 و گسترش سریع این فن جدید در پایان دهه 60 نقطه آغازی بود برای پیدایش سیستم‌های تسلیح خاک. خاک مسلح به ویژه در مورد سیستم‌های تسطیحی که در آنها ضرورت استفاده از روش‌های نگهداری خاک در جاهایی که تسطیح خاک به صورت متناوب باید انجام پذیرد و همچنین در جاهایی که اثر متقابل خاک مسلح کننده در تمام طول مسلح کننده وجود دارد، کاربرد داشت. این سیستم‌ها توسط اشلوسر و همکاران تحت عنوان خاک مسلح نامگذاری شدند.

هانری ویدال، خاک مسلح را به عنوان نوع جدیدی از مصالح مرکب درنظر گرفت و مفاهیم بسیار جالبی را در مورد خاک مسلح معرفی نمود که امروزه کلیت، حقیقت و کارایی آنها در عمل به اثبات رسیده است. باید توجه داشت که ویدال در اولین مقاله خود در سال 1996 نظریه جامعی درباره شیوه‌های مختلف ایجاد یک ماده چسبنده با استفاده از دانه‌های ناپیوسته و عناصر تسطیح ارائه نمود.

او ابتدا بافت مسلح کننده‌هایی متشکل از الیاف (بافته نشده، بافته شده و ...) را مورد بررسی قرار دارد و رفتار مصالح متعددی نظیر چوب، کاغذ رس، بتن و بالاخره مواد تشکیل دهنده بدن انسان را از طریق مجموعه مرتبطی از دانه‌ها و عناصر مسلح کننده‌ای که به واسطه نیروهای اصطکاکی در تاثیر متقابل با یکدیگر قرار می‌گیرند، توضیح داد.


انواع پلیمرهایی که به عنوان مسلح کننده به کار می‌روند

از آغاز ایجاد و توسعه خاک مسلح، تلاش‌های تجربی بسیاری جهت جایگزینی مسلح کننده‌های فلزی با مسلح کننده‌های پلیمری انجام گرفته است. در مقایسه با فلزات دامنه‌ ضرایب تغییر شکل و مقاومت کششی مواد پلیمری گسترده‌تر است. تاکنون از فرآورده‌های پلیمری زیر به عنوان مسلح کننده استفاده شده است:

ورقه‌هایی از پرده‌های زمینی

ورقه‌های زمین شبکه

نوارهای بافته‌ شده‌ای از پرده‌های زمینی

نوارهای الیافی پوشش دارد

نوارهای پلاستیکی صلب


به طور کلی مواد پلیمری تغییر شکل‌پذیرترند و نسبت به فلزات مقاومت کمتری دارند. گذشته از این، آنها از خود رفتار خزشی خاصی نشان می‌دهند. با وجود این، در هر سیستم حایل، می‌توان از مسلح کننده‌های پلیمری بر اساس تغییر رفتار شکل مجاز دیوار اسنفاده نمود.

کشسانی مسلح کننده‌ها به مقدار زیادی بر رفتار خاک مسلح تاثیر می‌گذارد. این موضوع توسط مک گاون و همکارانش در سال 1987 به طور کاملاً واضح نشان داده شده است. وی مسلح کننده‌های کشسان و غیرکشسان را مورد بررسی قرار داده است. علاوه بر افزایش مقاومت، عمده‌ترین اثر مسلح کننده‌های کشسان، افزایش شکل‌پذیری خاک و کاهش یا حتی حذف نرم شدگی مشاهده شده در رفتار ماسه‌های متراکم است. برعکس، مسلح کننده‌های غیرکشسان، اساساً مقاومت خاک و ضریب تغییر شکل‌پذیری را افزایش می‌دهند. لیکن آنها سبب می‌شوند که ضریب تغییر شکل‌پذیری خاک، بسیار ترد و شکننده شود.


بر این اساس می‌توان موارد زیر را از یکدیگر متمایز ساخت:

تسلیح با مسلح کننده‌های ترجیحاً غیرکشسان که عمدتاً با خاک مسلح مشخص می‌شوند. در این روش، مسلح کننده‌ها عموماً خطی و فلزی هستند.

تسلیح با مسلح کننده‌های ترجیحاً کشسان که با خاک لایه لایه (خاک چند لایه) مشخص شده‌اند. در این روش، مسلح کننده‌ها عموماً مسطح و از مواد صنعتی مصنوعی (پرده‌های زمینی و غیره) ساخته شده‌اند.


مقاله بررسی مراحل مختلف آزمایش خاک

مقاله بررسی مراحل مختلف آزمایش خاک در 30 صفحه ورد قابل ویرایش
دسته بندی عمران
بازدید ها 0
فرمت فایل doc
حجم فایل 78 کیلو بایت
تعداد صفحات فایل 30
مقاله بررسی مراحل مختلف آزمایش خاک

فروشنده فایل

کد کاربری 6017
کاربر

مقاله بررسی مراحل مختلف آزمایش خاک در 30 صفحه ورد قابل ویرایش


آزمایش تحکیم : ?

تراکم (Compaction). 4

نکات مهم در انجام آزمایش تراکم. ?

آزمایش حد خمیری: ??

آزمایش هیدرومتری.. ??

نفوذ پذیری (Coefficient of Permeability). 22

آزمایش بابار افتادن (Fallilg – Head Method). 23

به ثانیه تبدیل می‌کنیم. ??

میانگین.. ??

آزمایش تعیین GS. 27

تجزیه مکانیکی خاک (آزمایش دانه بندی). ??

انواع آزمایش الک… ??

روش نمونه گیری جهت دانه بندی.. ??



مراحل مختلف آزمایش خاک



آزمایش تحکیم :

هدف از انجام آزمایش تحکیم، تشخیص شدت و میزان نشت در خاک‌های رسی می‌باشد.

در این آزمایش نمونة خاک در درون یک هستة فلزی و بین دو صفحة متخلخل قرار داده می‌شود. و این حلقه در آب غوطه ور می گردد و بار بر نمونه اعمال می‌گردد. تعیین در ارتفاع نمونه توسط یک عقربة مدرج اندازه گیری می‌شود و هر 24 ساعت یک با فشار روی نمونه 2 برابر می‌گردد سپس منحنی زمان متغیر برای بارگذاری‌های مختلف کشیده می‌شود از روی این منحنی‌ها می‌توان زمان تحکیم و مقدار نشت خاکها را بدست آورد.

همچنین تغییرات تحکیم پوکی نمونه نسبت به فشار نیز بررسی می‌شود که در زیر آورده شده است.

روش انجام محاسبات

ارتفاع قسمت جامد نمونه قبل بارگذاری:

ارتفاع منافذ قبل از بارگذاری:

پوکی اولیه:

در اثر اولین افزایش بار تغییر شکل را خواهیم داشت، که تغییر پوکی از آن بدست می‌آید.

پوکی چدید را که بعد از افزایش بار ایجاد شد از فرمول زیر محاسبه می‌کنیم



این کار برای بارگذاری‌های بعدی نیز تکرار می‌شود. سپس نمودار P و پوکی به صورت یک منحنی بر روی کاغذ نیمه لگاریتمی رسم می‌شود.

وسایل آزمایش عبارت اند از:

1-دستگاه تحکیم 5- قوطی تعیین رطوبت

2- ترازو 6- اره سیمی

3- جک برای بیرون آوردن نمونه 7-کرنومتر

4- گرم خانه

این آزمایش برای نمونه‌های دست نخورده و خورده قابل انجام است. حلقة تحکیم را به کمک جک وارد نمونه می‌کنیم سپس سر و ته آن را با کمترین دست خوردگی صاف می‌کنیم و در محفظة تحکیم قرار می‌دهیم.

برای نمونه‌های دست خورده خاک را به حد روانی می‌رسانیم سپس آن را وارد محفظة تحکیم می کنیم.

انجام آزمایش:

بدلیل نبود زمان و اطلاعات تکمیلی بعدی، این آزمایش بطور کامل انجام نشد و تنها تحکیم نمونه در بار ثابت انجام شد که نتایج در زیر آمده است.

تراکم (Compaction)

هدف از انجام عملیات تراکم، کاهش میزان تخلخل خاک است. وجود آب تا میزان مشخصی، سبب تسهیل این عملیات می‌گردد. به دست آوردن این حد رطوبت و وزن مخصوص خشک بیشینه خاک پس از به کاربردن میزان معینی انرژی کوبشی، هدف مهم آزمایشی تراکم است.

در بسیاری از سازه‌های خاکی، مثل سدها، دیوارهای حائل، بزرگراه‌ها، فرودگاه‌ها، و … متراکم کردن خاک یک امر ضروری جهت بهبود مقاومت خاک می‌باشد. متراکم نمودن خاک که عبارت است از قرار دادن خاک در یک موقعیت چگالتر، به چند دلیل مطلوب است:

الف) کاهش نشست‌ها در آینده، ب) افزایش مقاومت برشی، ج) کاهش نفوذ پذیری د)بهبود خواص مکانیکی خاک، هـ) کاهش قابلیت تورم خاک.

در کارگاه برای تراکم خاک از غلتکهای چرخ استوانه‌ای صاف، غلتکهای پاچه بزی، غلتهای چرخ لاستیکی و غلتکهای ارتعاشی استفاده می شود. غلتکهای ارتعاشی برای تراکم خاکهای دانه‌ای مورد استفاده قرار می‌گیرند. تاثیر تراکم حاصل از دستگاه‌های فوق، محدود به اعماق 15 تا 30 سانتی‌متر سطحی است.

برای افزایش عمق نفوذ تراکم و تراکم کردن لایه‌های عمقی از تراکم ارتعاشی و تراکم دینامیکی استفاده می شود.


وسایل مورد نیاز برای آزمایش

وسایل خاص: وسیله متراکم کردن نمودن خاک

الف) قالب با in 6/4 (mm 115) عمق،in 4 (mm 100) قطر و (7/946) حجم

ب)حلقه متحرک دور قالب با in 5/2 (mm 5/62) عمق و in4 (mm 100) قطر.

ج) چکش با in2 (mm 50) قطر مقطع و 5/5 یا 10 پوند وزن و وسایل کنترل ارتفاع سقوط چکش

وسایل عمومی:

1- اسپری آبپاش، 2- الک شماره 4، 3- چکش لاستیکی، 4- پیمانه، 5- تا به بزرگ برای مخلوط کردن، 6- لبه نوک تیز یا چاقو به طور حداقل cm 25،

7- دورتراز و با حساسیت (Ib 01/0 و gr 01/0)، 8- آون، 9- خشک کننده،

10- قوطیهای خشک، 11- دستگاه خاک مخلوط کن، 12- وسیله‌ای برای بیرون

آوردن نمونه از قالب که از جک استفاده می‌شود.

روش انجام آزمایش:

که از دو تا الک in4 و in6 می‌شود استفاده کرد. که برای قالب in4 برای هر لایه 25 ضربه می‌زنیم با چکش 5/5 1پوند و برای قالب in6 با چکش یا (kg 5/2) 5/5 پوند برای سه لایه 56 ضربه می‌زنیم.

1- قالب خالی را همراه با ته آن و بدون حلقه دور قاب وزن می‌کنیم.

2- یک نمونه نماینده از خاکی که باید آزمایش شود. آماده می‌کنیم. همه کلوخه‌های خاک را در یک هان و توسط چکشی که سرآن لاستیکی است خرد می‌کنیم و از الک شماره 4 سرند می‌نماییم. که مقدار kg 7 از قالب in4 که رد شده را در هوای آزاد خشک باشد. به مقدار 5% آب به آن اضافه می‌کنیم.

3- با خاکی که از الک شماره 4 عبور کرده و به مقدار 5% آبی که به آن اضافه کرده در سه لایه تراکم به اندازه cm 5 تا 8 در قالب درست می‌کنیم.

4- به ملایمت خاک را فشار می‌دهیم تا سطح آن صاف شود و بعد با 25 ضربه یکنواخت و پخش شده در تمام سطح توسط ضربات چکش، خاک را متراکم می کنیم ارتفاع سقوط چکش را ft1 می‌گیریم. بین هر سقوط چکش، هم قالب و هم چکش باید به خاطر پخش یکنواخت ضربات در تمام سطح نمونه به آرامی چرخانده شود.

روش انجام آزمایش بابار افتادن

1- طول و قطر نمونه را به دست آورده، نمونه دست نخورده یا متراکم شده را ( که هدف تعیین نفوذپذیری پس از تراکم آن است) دخل استوانه می گذرایم. بهتر است آزمایش بر روی خود لوله نمونه‌گیری یا قالب تراکم انجام گیرد.

2- بالا و پایین نمونه را با کاغذ صافی و سپس سنگ متخلخل می‌پوشانیم و در قسمت پایین زیر سنگ متخلخل ورودی در پوش یک فنر گذاشته، در پوششها را به سر و ته قالب یا لوله پیچ می‌کنیم.

3- شیر آب ( مربوط به مخزن آب با سطح ثابت) را آهسته باز می‌کنیم. مدتی صبر می‌کنیم تا آب در نمونه جریان یافته، به حالت پایدار در آید ( بایستی سطح آب در پیزومترها ثابت بماند و تغییرات زیادی نداشته باشد. همچنین باید سعی کنیم که در بالا و پایین نمونه، حباب هوایی وجود نداشته باشد).

4- جریان‌‌ آب را از طریق بورت و به کمک یک لوله پلاستیکی از نمونه خاک عبور داده، به داخل قیف هدایت می‌کنیم. ضمناً نشت از استوانه نمونه را کنترل کرده، حبابهای هوا را خارج می‌نماییم.

5- با استفاده از یک شیر، جریان آب را از داخل نمونه متوقف می‌کنیم. این شیر روی لوله پلاستیکی رابط بین انتهای نمونه و قیف تعبیه شده است.

6- اختلاف بار آبی را اندازه می‌گیریم (h1) با توجه داشته باشیم که هیچ آبی به داخل بورت نباید اضافه شود.

7- شیر آب را باز می‌کنیم تا آب از طریق بورت وارد نمونه و سپس وارد قیف شود. از زمان شروع جریان، زمان سنج را به کار انداخته، تا موقع بستن شیر، مدت زمان را یادداشت کنیم. در طول این زمان h1 به h2 تبدیل می‌شود، لذا باید h2 ، Q و دمای آب را در این محدوده زمانی به دست آوریم. این آزمایش را حداقل 3 بار تکرار می‌کنیم.

درباره ثابت حجم زیادی آب استفاده می‌شود ولی در بار افتادن کمتر استفاده می‌شود.

زمان انجام آزمایش در بارافتادن زیاد و در بار ثابت زمان کمتر است.

برای انجام آزمایش هم از نمونه دست نخورده و هم از نمونه دست خورده استفاده می‌کنیم.

نمونه را می‌‌آوریم در آزمایشگاه اول درصد رطوبت را از قبل یادداشت می‌کنیم و سپس از الک یا mm 19 رد می‌کنیم و سپس در حجم سل متراکم می‌کنیم و در انجام آزمایش از یک نمونه خاک که به همان مقدار رطوبتی که در صحرا داشت و نمونه‌های دست نخورده را خرد می‌کنیم تا از همان دانستیه استفاده شود و 24 تا 48 ساعت زمان می‌برد که نمونه اشباع شود.

مقدار دانستیه × حجم = دانستیه

محاسبات:

ضریب نفوذپذیری در آزمایش بابارافتادن از رابطه زیر بدست می‌آید:

a : سطح مقطع داخلی بورت (cm2 )

t: انتهای زمان (s)

A: سطح مقطع نمونه (cm2 )

L: طول نمونه (cm)

H1 و h2 : ارتفاع آب نسبت به یک سطح مبنا در لوله به ترتیب در زمانهای 0 و t می‌باشد.

قبل از انجام آزمایش اول بورت اولیه را هواگیری می‌کنیم. و در هنگام محاسبه زمان، ابتداء چندین بار زمان را تکرار می‌کنیم و بعد میانگین می‌گیریم.


مقاله بررسی صنعت ریخته گری (خاک)

مقاله بررسی صنعت ریخته گری (خاک) در 22 صفحه ورد قابل ویرایش
دسته بندی فنی و مهندسی
بازدید ها 0
فرمت فایل doc
حجم فایل 24 کیلو بایت
تعداد صفحات فایل 22
مقاله بررسی صنعت ریخته گری (خاک)

فروشنده فایل

کد کاربری 6017
کاربر

مقاله بررسی صنعت ریخته گری (خاک) در 22 صفحه ورد قابل ویرایش


مقاله 1:
انواع مختلفی از خاک در جهان وجود دارند که بسیاری از آنها در صنعت ریخته گری آزمایش شده اند اما سه نوع اصلی که در این صنعت بکار می روند شامل کائولن (خاک نسوزط)، مونت موریلونیت (بنتونیت) و ایلیت می باشند. مونت موریلونیت مهم ترین کانی بنتونیت بود9 که از یک ساختار سه لایه صفحه ای تشکیل شده است. 2 لایه از تتراهدلا سیلیسییم – اکسیژن و یک لایه دی اکتاهدرال یا تری اکتاهدرال هیدوکسیل آلومینیم (گیبسیت). لایه میانی‌ آلومینیوم از اکتاهدرالی با یک اتم آهن که توسط شش واحد هیدلوکسیل محاصره شده تشکیل گردیده است. به شکلهای 1 و 2 مراجعه کنید.
خاک های سدیمی، کلسیمی . و بنتونیت های فعال شده دراین خانواده قرار گرفته و به میزان فراوانی در صنعت ریختهگری استفاده می شوند. کائولن از دو لایه ساختاری تشکیل شده است یک لایه اکتاهیدال آلومینیم و یک لایه تتراهیدال الومینیم و یک لایه تتراهدرال سیلیسیم. لایه سیلیسیم از یک اتم سیلیسیم و 4 اتم اکسیژت تشکیل شده است.
خاک نسوز، خاک چینی، کائولینیت و خاک رس دراین خانواده قرار می گیرد. در صنایع مدرن بریخته گری بندرت از این خاکها استفاده می‌شود.


ایلیت خاکی با نسوزندگی ضعیف است. این خاک غالبا در ماسه های طبیعی دیده شده اما در ماسه های مصنوعی هیچگاه افزوده نمی‌شود.
مونت موریلونیت دارای یک صفحه میانی هیدروکسیل آلومینیوم است که بین دو لایه اکسید سیلیسیم آلومینیم است که بین دو لایه اکسید سیلیسیم قرار گرفته است. بخشی از آلومینیم توسط منیزیم جانشین شده که یک حالت عدم تعادلی یونی را به وجود می آورد. تعادل یونی را می توان با افزودن سدیم، کلسیم یا منیزیم بدتس آورد که این عمل تبادل یونی نامیده می‌شود.

در صنایع جدید ریخته گری ، برخی خاکهای مورد استفاده از نوع تبادل یونی (فعال شده) هستند. دو نوع مونت موریلونیت مهم که در آن صنعت ریخته گری بکار می‌روند عبارتند از :

الف) بنتونیت سدیم که با خاصیت تورم زیاد شناخته می‌شود.

ب) بنتونیت کلسیمی که تورم پذیری کلسیمی هستند که با نمکهای سدیم نظیر کربنات سدیم فرآوری شده تاند تا خواص خاک بهبود یابد.این فعال سازی بودن آنکه باعث کاهش استحکام خشک گردد، موجب بهبود پایداری خواص شده و عیوب ناشی از انبساط را کاهش می دهد.

عمل فعال سازی می‌تواند به صورت «تر» یا «خشک» انجام شود اما نتایج بررسیها نشان می دهند که فعال سازی «تر» خواص بهتری را بدست می دهد.

بنتونیت های سدیمی، کلسیمی و خاک های تبادل بودن کره، هر یک خواص منسبی دارند. انتخاب نوع خاک به خواص مورد نیاز و مسائل اقتصادی ازتباط دارد. در صنعت ریخته گری فولاد، برای ریخته گری چدن و فلزات غیر آهنی درماسه‌تر معمولاً از بنتونیت کلسیمی یا بنتونیت فعال شده یا مخلوطی از ینتونیت سدیمی/کلسیمی استفاده می‌شود. هر کارخانه ریته گری باید نیازمندیهای خود را شندهته و بر آن اساس نوع خاک مناسب را انتخاب کند. ازیک خاک یا مخلوطی از خاک ها می توان در اغلب موارد برای دست یابی به خواص مورد نظر استفاده کرد. در فرآیندهای قالب گیری ماشینی با فشار بالا، این انتخاب اهمیت بیشتری داشته و معمولاً برای بهبود عملکرد، افزودنی دیگرنیز به ماسه اضافه می شوند.

مقاله 2: چسب های زرین نوع فوران ابتدا در سال 1958 به عنوان سیستم =سب فوران بدون پخت اسید کاتالیز شده معرفی شدند. دو سال بعد صنعت اتومایتو این رزین ‌ها را اصلاح کرد تا به کاتالیزورهای نمکی اسید عمل کنند تا در ماهیچه های Hotbox استفاده شود سپس در اوایل دهه 80 (زرین های فوران به عنوان بزرگترین سیستم فروش بدون پخت تبدیل شدند.

چسب های فوران بدون پخت (سردگیر ) در تهیه قالبهای ماسه ای در ریخته گری قطعات چدنی و فولادی کاربرد زیادی پیدا کرده اند. در این پژوهش متغیرها موثر در سخت شدن چسب شامل: درصد کاتالیست، رطوبت ماسه، اثر دمای محیط و فاصله زمانی بین سنجش استحام و زمان قالبگیری مورد بررسی قرار گرفته است. نهایتا شرایط بهینه قالب گیری چسب فوران با کاتالیست اسیدتولوئن سولفونیک به دست آمد. در این شرایط استحکام فشاری ماسه برابر 400، عبود گاز آن AFS 130، وز مان عمر مفید این ماسه برابر 20 دقیقه تعیین گردید.

چسب های فوارن بدون پخت (سردگیر) ر تهیه قالب های ماسه ایدر ریخته‌گری قطعات چدنی فولادی کاربرد زیادی پیدا کرده اند. سیستم چسبهای فورانی بدون پخت (No- boke) دراواخر سال 1950 به صنعت ریخته گری معرفی شد و از سال 1960 تاکنون به طور گسترده ای در صنایع ریخته گری کشورهای جهان استفاده می‌شود. پایه چسبهای فورانی. الکل فورقوریل با فرمول شیمیایی C4H3OCH2OH است که از فورفورال تهیه می‌شود. فورفورال نیز خود از ت0حول بقایای محصولات غذاییی همچون غلات، پوست جو ، تفاله نیشکر و غیره بدست می آید. درجه چسب فوران با استفادهاز مقدار آب و نیتروژن و میزان فورفوریل الکل پایین برای ریخته گری و ماهیچه سازی چدن و آلیاژهای کم و یا بع عبارتی با فورفوریل الکل زیاد برای ریخته گری و ماهیچه سازی قطعات فولادی بکار برده می شوند. یکی از انواع خاص چسبهایفورانی سردگیر چسبهای بدون نیتروژن است. وجود نیتروژن باعث افزایش طول مدت نگهداری چسب می‌شود. وجود نیتروژن باعث افزایش طول مدت نگهداری چسب می‌شود ولی از طرفی وجود آن در بسیاری از موارد با تشکیل گاز، باعث ایجاد عیوب ریخته گری می‌شود که اغلب از نوع تخلخل و حفره ای بوده و خطرناک می باشند. نیتروژن همچنین ممکن است تخلخل های زیر سطحی ایجاد کند. برای بکار بدن این چسب در قالب گیری، ابتدا ماسه را با یک کاتالیست یا سخت کننده مخلوط می کنند و سپس چسب فوران را را آن مخلوط می نمایند. انواع کاتالیستهای معمول این چسب به ترتیب افزایش واکنش دهندگی عبارتند از: اسید فسفریک و یا مخلوطی از اسید فسفریک و اسید سولفوریک، آریل سولفونیکها مثل اسید تولئون سفلونیک(TSA) با فرمول شیمیای CH3So3H و اسید بنزن سولفونیک (‌BSA) با فرمول SO­3 H اسید فسفریک ضعیف تین اسید بین اسیدهی مذکوراست.

معمولاً مقداراسید فسفریک لازم جهت افزودن به مخلوط حدود 40 الی 60 درصد وزنی چسب فوران می باشد. بعد از اسید فسفریک امروزه بیشتر از اسیدها آروماتیک TSA و پس از آن BSA که قوی تر است استفاده می‌شود. معمولاً وقتی که ماسه مصرف شده (غیر تازه) باشد یا حالت قلیایی داشته باشد استفاده از BAS مطلوب تر است. افزودن این دواسیددرحدود 20 الی 25 درصد چسب به مخلطو کاسه کافی است. به طول کلی مکانیزم سخت شده چسب در چسبهای سرد فورانی که با اسید سخت می شوند به صورت پلبیمریزاسیوناست. در واقع با وجود یک اسید قوی، زنجییزه های الکل فورفرویل به صورت فیلمی ذرات ماسه را می پوشاند و باعث چسبیدن این ذرات ب9ه هم می شوند. واکنش پلیمریزاسیون این چسب از نوع تراکمی است و محصول جنبی داشته و به صورت زیر می باشد.

این واکن گرمازا است وحرارات ناشی ازآن باعث تسریع پلیمریزاسیون به صولت لایه لایه تا بخشهایمرکزی می‌شود. آب تولید شده از واکنش پلیمریزاسیون برای تکمیل گیرش رزین باید بخیر شود. به همین دلیل گیرش رزین از سطح خارجی قالب به سمت داخل اتفاق می افتد. سرعت واکنش تحت تاثیر عواملی چون دمای ماسه و نوع ماسه، نوع مخلوط کنو سرعت مخلوط کردن ، ترکیب چسب وننع و مقدار عنصر فعال کننده مصرفی قرار دارد. افزایش دمای محیط تا C 0 30 موجب افزایش سرعت‌گیرش و رسیدن به استحکام بالا می‌شود. افزایش رطوبت نیز در دمای ثابت باعث کم شدن سرعت گیرش می‌شود. دمای ماسه تأثیر بسزایی را روی فرآیند پلیمریزتاسیون دارد. درمحدوده دمایی C 0 16 تا C 0 38 استحکامهای مناسب تری بدست می آید. در ضمن هر چه روطوبت نسبی هوا بالاتر رود به دلیل کاهش سرعت تبخیر حاضر در کاتالیست و آب تولید شده از وانش تراکمی‌، استحکام کاهش می‌یابد.

مکانیزم اتصال خاک رس

اتصال تر (Green bond)

مکانیزم اتصال خاک رس (Clay bond) از طریق تشریح وضعیت یک ذره خاک رس هیدراته شده (A hydrated clay particle) که به آن می سل (ءهزثممث) گفته می شود، باین می‌شود.نیروی بین می سل (intermicellet force) شبکه ای درفصل مشترک کوارتز – خاک رس و خاک رس – خاک رس که بواسطه جذب ترجیحی کاتیونها و آنونیونها برروی سطح است.

اصولا اتصال خاک رس با دانه های ماسهزمانی امکان پذیر است که ذات خاک رس هیدارته شده باشد. در خضور مولکول های آب که طبق واکنش زیر تمایل دارند تا هیدرولیز شوند،

H 2 O

ذرات خاک رس ترجیحا یون های هیدروکسیل (OH-) را جذب می کنند. در سطح بلورخاک رس (Clay crystal) پیوندهای ظرفیتی غیر کامل ایجاد می‌شود و ذره خاک رس -‌ آب یک ذره باردار با یک بارمنفی خواهد شد.

کائولینیت در سطح خودداری پیوندهای ظرفیتی منفصل است که این امر باعث افزایش نقاط فعال بروی بلور می‌شود. وقتی آب به یک خاک رس از نوع کائولینیت اضافه می‌شود ، یونهای OH- جذب می شوند اما توسط مرکز خاک رس دفع می شوند تا جایی که موقعیت و شرایط تعادل فراهم شود. کاتیونها موقعیتی را بخود می گیرند که. این موقعیت بگونه ای است که نیروی الکتروایستایی (Electrostatic force) تمایل دارد تا صفر شود و یک می سل خاک رس ایجاد شود. مقدار نیروهای دافعه بواسطه نوع کاتیونهایی چون Na+ و H+ و Ca2+ تعیین می‌شود و تاثیر تلفیقی نیروهای جاذبه و دافعه این تمایل را دارد که ذره خاک رس از نظر بار الکتریکی خنثی شود. در یک ماده قالبگیری، ذرات خاک رس و ذرات کوارتز در زمینه و محیطی از‌آب انتشار یافته و گسترده شده اند، آب باعث تشکیل می سل های خاک رس می‌شود که خنثی شده هستند و انرژی جنبشی آنها باعث می‌شود که بسمت یکدیگر حرکت کنند. در این شرایط، یک نیروی جاذبه مابین یونها غیر همنام پدید می آید ویک نیروی دافعه خاک کاتیونها و هسته خاک رس ظاهر می‌شود. وقتی فاصله بین می سل های خاک رس افزایش می یابد و در نتیجه یک نیروی بین می سل شبکه ای بوجود می آید.

کشش دو می سل بسمت یکدیگر باعث جهت دار شدن و آرایش یونهای غیر همنام بطرف هم می‌شود و در نتیجه یک خاک رس دو قطبی شده تشیکل می‌شود و حداکثر نیروی جاذبه دریک فاصله بهینه (Optimum) برابر با x وجود دارد. احتمال دارد تعداد بسیاری از اینگونه دوقطبی ها در یک محیطی آب – خاک رس بوجود آید و نظم و آرایش مناسبی بخود بگیرند و یک شبکه بهم پیوسته (A Network binding) از ذرات خاک رس هیدارته تشکیل می‌شود.

برحسب نوع ماسه مقدار بار الکتریکی موجود بر سطح ذره متفاوت است و بای تشکیل یک دو قطبی کامل مقدار هیداته شدن خاصی مورد نیاز است. بهمین دلیل است که با افزایش مقدار هیدراته شدن خاص مورد نیاز است. بهمین دلیل است که با افزایش مقدار آب (تایک اندازه خاص) استحکام مخلوط ماسه پیوند یافته با خاک رس افزایش می یابد. وقتی مقدار آب از آن حد خاص که حدبهینه است فراتر رود. آب اضافی بداخل بطوریکه فاصله آنها بیش از اندازه x می‌شود و نیروی می سل شبکه‌ای کاهش می یابد.

فصل مشترک کوراتز – خاک رس

سطح کوارتز نیز پیوندهای ظرفیتی منفصل و منقطع دارد و درنتیجه می سل های کوارتز هیدارته شده تشکیل می‌شود. دو قطبی های خاک رس اطراف دانه های کوارتز را احصاطه می کند و برروی سطح ماسه اتصال می یابند. البته نیروی موجود در فصل مشترک کوارتز – خاک رس ضعیف تر از پیوند بین می سل بین دوقطبی های خاک رس است.

اتصال خشک (Dry bond)

در یک ماسه خشک، استحکام با افزایش مقدار‌آب زیاد می‌شود و این ازدیاد تا یک حد خاص ادامه می یابد اما در مورد ماسه های ریخته گری که مقدار آب آنها در محدوده متعارف و معمول است تا شکل پذیری مناسب وجود داشته باشد، فاصله بین دوقطبی های خاک رس همواره بیشتر از مقدار بحرانی (x) است زیرا‌ آب اضافی مابین فضای بین می سل ها قرار می گیرد. در هر حال اگر مجموعه تلفیقی خاک رس – آب – کوارتز باندازه کافی حرارت ببیند تا آب تبخیر شود، دو قطبی ها مجددا بسمت یکدیگر کشیده می شوند و کاهش حجم نیز پدید می آید، هر قدر مدت زمان حرارت دادن مخلوط قالبگیری طولانی تر باشد انقباض (Shrinkage) افزایش می یابد و این امر تا آن زمان که فاصله ما بین دوقطبی ها به حد بحرانی (x) برسد ادامه می یابد. از این پس ادامه حرارت دادن مخلوط قالبگیری اثر کمی بر مقدار استحکام خشک دارد زیرا فاصله رطوبت به حد بحرانی رسیده است.


مقاله بررسی روابط خاک و گیاه

مقاله بررسی روابط خاک و گیاه در 31 صفحه ورد قابل ویرایش
دسته بندی کشاورزی و زراعت
بازدید ها 0
فرمت فایل doc
حجم فایل 958 کیلو بایت
تعداد صفحات فایل 31
مقاله بررسی روابط خاک و گیاه

فروشنده فایل

کد کاربری 6017
کاربر

مقاله بررسی روابط خاک و گیاه در 31 صفحه ورد قابل ویرایش

فراهم بودن مواد غذایی در خاک ها

تجزیه‌ی شیمیایی خاک
سرراست ترین راه تعیین فراهم بودن مواد غذایی در خاک، اندازه گیری واکنش های رشد گیاه، با استفاده از آزمایش های کوددهی در مزرعه است. اما این روش وقت گیر بوده یافته های آن به آسانی قابل تعمیم از یک جا به جایی دیگر نیست. برعکس، تجزیه‌ی شیمیایی خاک، آزمایش خاک روشی به نسبت سریع و با صرفه برای دریافت اطلاعات درباره‌ی فراهم بودن غذا در خاک، به عنوان مبنای تجویز استفاده از کودهاست. روش آزمایش خاک سالهای سال در کشاورزی و باغبانی با موفقیت نسبی به کار گرفته شده است. کارایی این روش با میزان همخوانی و هماهنگی اطلاعات به دست آمده با آزمایش های کوددهی مزرعه و نیز با شیوه‌ی بیان و تفسیر تجزیه انجام شده، پیوند نزدیک دارد. در بیشتر موارد، انتظارات، بیشتر از اندازه‌ی کارایی آزمایش های خاک است. در این فصل از دلایل این دوگانگی با تکیه بر فسفر و پتاسیم،‌ به تفصیل گفت و گو خواهد شد.

روش آزمایش خاک از گستره ای وسیع از روش های متداول عصاره گیری مانند اشکال گوناگون اسیدهای رقیق، نمک ها یا عواملی بهره می گیرد، که ترکیبات پیچیده ایجاد می‌کنند. بسته به روش مورد استفاده، میزان کاملا متفاوت از مواد غذایی گیاه استخراج می شود. همچنان که در مورد فسفر، در جدول 1-13 آمده است. به عنوان راهنما، یک میلی گرم فسفر در 100 گرم خاک می تواند برابر حدود 30 کیلوگرم فسفر در هکتار در یک پروفیل با ژرفای 20 سانتی متر در نظر گرفته شود (وزن مخصوص خاک 5/1 = 3 میلیون کیلوگرم خاک در هکتار). کدام روش باید برای تشخیص فراهم بودن یک ماده‌ی غذایی کانی و به وسیله‌ی آزمایش های رشد برای پیش بینی واکنش گیاه در برابر کود ارزیابی شود.




جدول 1

در بیشتر موارد، چند روش به یک میزان برای آزمایش خاک در مورد یک گونه‌ی ویژه‌ی غذایی کانی مناسب هستند (1921). برای نمونه، برای فسفر، با وجود میزان گوناگون فسفر استخراج شده، روش های استخراج آبی می تواند به همان میزان برای تعیین مناسب باشد که روش استخراج با اسیدهای رقیق شده (1637). به هر حال، به دلایل گوناگون، پیش بینی واکنش در برابر کود، بر پایه‌ی تجزیه‌ی شیمیایی خاک به تنهایی رضایت بخش نیست: به این دلیل که تنها ظرفیت بالقوه‌ی یک خاک را برای ذخیره‌ی غذاهای گیاه بیان می کند؛ به اندازه‌ی کافی و به طور خاص، تحرک مواد را در خاک نشان نمی دهد، هیچ اطلاعاتی را در رابطه با عوامل گیاهی، مانند رشد ریشه و تغییراتی که در فضای مجاور ریشه به وسیله‌ی ریشه به وجود می آید و نقش تعیین کننده در جذب غذاها در شرایط مزرعه دارند، بیان نمی کند. در سه بخش زیر، از این عوامل چکیده وار گفت و گو می شود. در آغاز، از میزان فراهم بودن مواد غذایی در رابطه با تحرک و رشد ریشه گفت و گو می شود.

حرکت مواد غذایی به سطح ریشه

اصول محاسبات

اهمیت تحرک مواد غذایی در خاک در مهیا بودن آنها برای گیاهان، نخستین بار از سوی باربر (1962) تاکید شد. برداشت او بر پایه‌ی سه جزو استوار بود: برخورد ریشه‌ها با مواد غذایی، حرکت توده ای و انتشار (نگاره‌ی 1). با نفوذ ریشه ها به درون خاک، ریشه به درون فضاهایی حرکت می‌کند که بیشتر از سوی خاک با عناصر غذایی آماده اشغال بوده است. برای نمونه، بر سطوح رس چسبیده اند. سطوح ریشه در این فرایند جابه جایی با مواد غذایی تماس نزدیک پیدا می‌کنند (برخورد می کنند). فنی و آوراستریت (1939)، فرایند داد و ستد تماسی را برای جذب کاتیون بدون جابه جایی از درون محلول خاک ارایه دادند. باربر (1966)، این فرایند جابه جایی را به شیوه ای کلی تر، به عنوان عاملی بیان می کند، که می تواند در رفع نیاز همه‌ی غذاهای کانی گیاهان نقش داشته باشد.

محاسبات برخورد ریشه ها بر پایه‌ی:

الف- میزان مواد غذایی آماده در حجمی از خاک که به وسیله‌ی ریشه ها اشغال شده اند.

ب- حجم ریشه، به عنوان درصدی از کل حجم خاک- به طور میانگین یک درصد از حجم خاک سطحی.

پ- نسبتی از کل حجم خاک، که به وسیله حفره های خاک اشغال شده است (به طور میانگین 50 درصد).





نگاره‌ی 1- نمودار نمایی حرکت عناصر کانی به سطح ریشه گیاهان خاکزی. (1) برخورد: جایگزینی حجم خاک به وسیله حجم ریشه (جذب بدون ترابری). (2) جریان توده ای: ترابری توده‌ی محلول خاک در جهت شیب پتانسیل آب (کشیده شده به وسیله‌ی تعرق). (3). انتشار: ترابری مواد غذایی در جهت شیب غلظت . 0 = مواد غذایی آماده (آنطور که برای نمونه به وسیله‌ی آزمایش خاک تعیین شده است)

جزو دوم حرکت توده ای آب و غذاهای محلول به سطح ریشه، که به وسیله‌ی جریان تعرقی گیاهان انجام می شود. براورد کمیت غذاهایی که با حرکت توده ای برای گیاهان فراهم هستند، بر پایه‌ی غلظت ماده‌ی غذایی در محلول خاک و میزان آب تعرق بر مبنای واحد وزن بافت های بخش هوایی گیاه (ضریب تعرق، برای نمونه 300 تا 600 لیتر آب بر کیلوگرم وزن خشک ساقه) یا در هر هکتار فراورده. نقش انتشار برای رساندن غذاها به سطح ریشه قابل اندازه گیری مستقیم نیست، اما بایستی با محاسبه‌ی تفاضل میان کل مواد غذایی جذب شده به وسیله‌ی گیاهان و میزانی، که از راه برخورد ریشه ها و حرکت توده ای جذب می شود تعیین می گردد.

نمونه ای از این محاسبه، در جدول 2-13، ارایه شده است. آشکار است که در این خاک، حرکت توده ای سهم اصلی را در فراهم کردن کلسیم و منیزیوم داراست، در حالی که فراهم کردن پتاسیم و فسفر، عمدتا به انتشار وابسته است. افزون بر این، فراهم آوری کلسیم و منیزیوم با حرکت توده ای بیشتر از میزان جذب شده است، و بنابراین انتظار می رود این مواد غذایی در سطح ریشه انباشته شده باشند. یافته های همانند آنچه که در جدول 2 ارایه شده، به وسیله‌ی دیگر نگارندگان به دست آمده است (مانند منگل و همکاران[1]. 1969)
نقش انباشتگی ریشه زایی

گرچه انباشتگی زیاد ریشه و تارهای کشنده‌ی دراز، عوامل مهم در جذب موادغذایی که به وسیله ی انتشار مهیا شده‌اند به شمار می‌آیند، اما رابطه‌ی میان انباشتگی ریشه‌زایی و میزان جذب، چنانکه در نگاره‌ی 8 نشان داده شده است، خطی نیست.




اصولاً رابطه ی خمیده خطی همانند میان میزان جذب فسفر و انباشتگی تارهای کشنده‌ی ریشه، به دلیل رقابت میان تارهای کشنده موجود بایستی وجود داشته باشد (861). این رقابت، هنگامی که تلاش در ایجاد رابطه میان انباشتگی ریشه‌زایی، در لایه‌ها یا افق مختلف خاک و نقش آنها در فراهم آوری مواد غذایی می‌شود بایستی در نظر گرفته شود.
فراهم بودن مواد غذایی و توزیع آب در خاک

در شرایط مزرعه، میزان موادغذایی فراهم، از نظر شیمیایی، معمولاً در خاک‌های سطحی به مراتب بیشتر از خاک‌های عمقی است. به طور کلی، انباشتگی ریشه زایی از الگویی همانند پیروی می‌کند و لگاریتم انباشتگی ریشه زایی در برابر افزایش ژرفا، سیر خطی نزولی طی می کند (677). اما تفاوت در ذخایر آب، هم توزیع ریشه ها و هم جذب مواد غذایی از عمق‌های مختلف خاک را، تغییر می دهد. اثر میزان آب بر توزیع و پراکندگی ریشه‌ها در جو بهاره، در طی دو سال پیاپی، به خوبی نشان داده شده است (1676). در سال نخست، با بارندگی زیادی (82 میلی متر) که یک ماه پس از کاشت رخ داد، بیشتر از 70 درصد کل جرم ریشه در خاک سطحی (5/2- 5/12 سانتی متر) دو ماه پس از کاشت مشاهده شد و تنها در حدود 10 درصد از ریشه‌ها به عمق بیشتر از 5/22 سانتی‌متر نفوذ کرده بودند؛ برعکس، درسال بعد، با کاهش بارندگی (24 میلی‌متر)، در طول یک ماه نخست پس از کاشت، میزان همانند توزیع ریشه، به ترتیب در حدود 40 و 30 درصد بود. این گونه تغییر در توزیع ریشه، پی‌آمدی مهم را در جذب موادغذایی از افق‌های مختلف خاک داراست. در گندم بهاره در خاک لوئیس، به طور میانگین در حدود 50 درصد از کل پتاسیمی که در اواخر فصل رشد جذب شده بود از قسمت عمقی زمین فراهم شد. اما بسته به بارندگی در طول فصل رشد (یعنی میزان آب جذب شدنی در خاک سطحی)، این درصد به میزانی قابل توجه، میان سال‌های گوناگون تغییر کرد، به طوری که، در طول سال خشک، در حدود 60 درصد و در طول سال مرطوب، در حدود 30 درصد بود (543).

از سوی فاکس ولیپز[2](1960)، نشان داده شده است که در حدود سه درصد کل پیکر ریشه‌ی یونجه، بیشتر از 60 درصد کل موادغذایی را در طول دروه‌های خشکی از خاک عمقی جذب می‌کند. اما حتی زمانی که پراکندگی باران در طول فصل رشد یکنواخت باشد، برای نمونه، برای فراهم بودن فسفر در مناطق نیمه مرطوب اروپای مرکزی، میزان رطوبت خاک سطحی، عامل محدودکننده به شمار می‌آید. با وجود فراهم بودن زیادتر فسفر در خاک سطحی (به طوری که با آزمایش خاک آشکار شده) در مراحل بعدی رشد، میان 40 و 30 درصد کل جذب فسفات از خاک عمقی فراهم می‌شود.

جدول 6





تغییرات فراهم کردن مواد به وسیله‌ی حرکت توده‌ای و انتشار، در هنگام مراحل گوناگون رشد و نمو

میزان نسبی مواد غذایی که به وسیله‌ی حرکت توده ای و انتشار فراهم می‌شود در مورد نیترات که توانایی تامپونی پایینی در خاک دارد، به میزانی قابل توجه تغییر می‌کند. غلظت در خاک سطحی در آغاز فصل رشد معمولاً بالاست، اما از آن پس در نتیجه‌ی جذب از سوی گیاه، به سرعت کاهش می‌یابد. در گندم بهاره، تغییر غلظت نیترات محلول خاک، هماهنگ باسیر نزولی در میزان نیترات فراهم شده به وسیله‌ی حرکت توده‌ای و با سیر صعودی در فراهم آوری به وسیله‌ی انتشار ارتباط دارد، که بیشتر از 50 درصد همه‌ی نیترات را فراهم می‌کند (1792).

فراهم آوری موادغذایی برای چغندر قند به وسیله‌ی حرکت توده‌ای در گذر فصل رشد، حتی کمتر از اینهاست به طور میانگین 32 کیلوگرم ازت نیتراته در مقایسه با 181 کیلوگرم که به وسیله‌ی انتشار فراهم شده است (1793). یک بررسی زمان بندی شده (نگاره‌ی 9)، نشان داد که فراهم آوری به وسیله‌ی حرکت توده‌ای به آغاز فصل رشد منحصر است؛ در طول این مدت نیترات از خاک سطحی، جذب می‌شود که غلظت بالایی از نیترات در محلول خود دارد. از این پس، نیترات در خاک سطحی کاهش پیدا می‌کند و در اثر نفوذ ریشه به درون خاک عمقی، به اندازه‌ی فراوان با انتشار فراهم می‌شود. این نمونه آشکار روشن می‌کند که میانگین اطلاعات مربوط به مشارکت حرکت توده‌ای و انتشار (همچنین افق‌های گوناگون خاک) باید به دقت تفسیر شود، زیرا چنین اطلاعاتی تا اندازه ای بیانگر تغییرات زیاد و پویایی این فرایندهاست.





نگاره‌ی 9 آزادسازی ازت نیتراته به بوته‌های چغندر قند، به عنوان تابعی از ژرفای خاک (سانتی متر) و زمان. خاک: لووی سول مشتق از لوئس (منبع 1793).


پاوریوینت آب و خاک و گیاه

پاوریوینت آب و خاک و گیاه
دسته بندی کشاورزی و زراعت
بازدید ها 0
فرمت فایل ppt
حجم فایل 358 کیلو بایت
تعداد صفحات فایل 42
پاوریوینت آب و خاک و گیاه

فروشنده فایل

کد کاربری 4674
کاربر

پاوریوینت آب و خاک و گیاه

روابط اب و خاک و گیاه
•پتانسیل آب
• آب قابل استفادهٔ خاک
• جذب و حرکت آب
•تبخیر و تعرق (Evapotransopiration)
• عوامل محیطی مؤثر بر تبخیر و تعرق
• عوامل گیاهی مؤثر بر تبخیر و تعرق
• تبخیر و تعرق بالقوه(Potential evapotranspiration)
•خاک گیاه علفى سریع‌الرشد عمدتاً از آب تشکیل شده است. محتوى آب گیاه بین ۷۰ تا ۹۰% مى‌باشد که بسته به سن گیاه، گونه گیاه، بافت موردنظر و محیط، متفاوت است. آب براى بسیارى از فعالیت‌هاى گیاهى لازم است:


•۱. حلال بوده و محیطى مناسب براى واکنش‌هاى شیمیائى فراهم مى‌نماید.
•۲. محیطى مناسب براى انتقال مواد آلى و معدنى مى‌باشد.
•۳. موجب تورم سلول‌هاى گیاهى مى‌شود. آماس باعث بزرگ شدن سلول، ساختار گیاه و شکل‌گیرى آن مى‌گردد.
•۴. باعث آبگیرى (Hydration)، خنثى‌سازى (Neutralization)، بار الکتریکى روى مولکول‌هاى کلوئیدى مى‌شود. در مورد آنزیم‌ها، آبگیرى موجب حفظ ساختمان آنزیم و تسهیل فعالیت‌هاى کاتالیزورى آن مى‌گردد.


•۵. ماده خام فتوسنتزى فرآیندهاى هیدرولتیکى و سایر واکنش‌هاى گیاهى را تشکیل دهد.


•۶. تبخیر آب (تعرق) موجب خنک شدن گیاه مى‌گردد.
•در شرایط مزرعه، ریشه‌ها در خاک نسبتاً مرطوب نفوذ مى‌کنند، درحالى‌که ساقه و برگ‌ها در محیط نسبتاً خشک رشد مى‌نمایند. این امر موجب جریان مستمر آب از طریق خاک به داخل گیاه و به اتمسفر مى‌گردد که در جهت کاهش انرژى پتانسیل صورت مى‌گیرد. مقدار آبى که روزانه از این طریق جریان مى‌یابد حدود ۱ تا ۱۰ برابر مقدارى است که بافت گیاهى در خود نگه داشته و ۱۰ تا ۱۰۰ برابر مقدار آبى است که براى توسعهٔ سلول‌هاى جدید مصرف مى‌شود و ۱۰۰ تا ۱۰۰۰ برابر مقدار آبى است که در فتوسنتز به مصرف مى‌رسد. بنابراین در اولین مرحله، آب از طریق خاک به برگ حرکت مى‌کند تا مقدار آبى که از طریق تعرق از دست رفته را جبران نماید.