دسته بندی | نساجی |
فرمت فایل | doc |
حجم فایل | 1303 کیلو بایت |
تعداد صفحات فایل | 75 |
چکیده :
روشهای سینتیکی- اسپکترفوتومتری از جمله روشهای تجربه دستگاهی به منظور بررسی تغییرات میزان گونههای موجود در نمونه میباشند که ضمن دارا بودن صحت، دقت و سرعت عمل بالا دارای هزینه روش بسیار پایین است. این خصوصیات کاربرد این تکنیک را در حد وسیعی برای بررسی رفتار ترکیبات رنگی و چگونگی تخریب وحذف آنها از پسابهای صنعتی میسر میسازد. نظر به اهمیت ایجاد آلودگی توسط رنگهای آلی در پسابهای صنعتی ارائه روشهای مناسب و جدید با حداقل هزینه و کارآیی بالا به منظور حذف این گونه ترکیبات مورد نظر پژوهشگران بوده و هست.
در این پروژه علاوه بر ارائه فاکتورهای مؤثر در تخریب رنگ متیلنبلو میتوان به اندازهگیری یون کروم که یک ماده سرطانزاست، پرداخت. یک روش حساس و ساده برای تعیین مقادیر بسیار کم کروم به روش سینتیکی- اسپکتروفوتومتری براساس اثر بازدارندگی کروم در واکنش اکسیدشدن متیلنبلو توسط پتاسیم نیترات در محیط اسیدی (H2SO4 4 مولار) معرفی شده است. این واکنش به روش اسپکتروفوتومتری و با اندازهگیری کاهش جذب متیلنبلو در طول موج 664 نانومتر به روش زمان ثابت استفاده شده است.
|
فهرست مطالب
عنوان صفحه
چکیده
فصل اول : اسپکتروفوتومتری
1-1- اساس اسپکتروفوتومتری جذبی................. 14
1-2- جذب تابش.................................. 15
1-3- تکنیکها و ابزار برای اندازهگیری جذب تابش ماوراء بنفش و مرئی 15
1-4- جنبههای کمی اندازهگیریهای جذبی............ 16
1-5- قانون بیر- لامبرت (Beer - Lamberts Law)......... 17
1-6- اجزاء دستگاهها برای اندازهگیری جذبی....... 21
فصل دوم : کاربرد روشهای سینتیکی در اندازهگیری
2-1- مقدمه..................................... 23
2-2- طبقهبندی روشهای سینتیکی................... 25
2-3- روشهای علمی مطالعه سینتیک واکنشهای شیمیایی 27
2-4- غلظت و سرعت واکنشهای شیمیایی ............. 28
2-5- تاثیر قدرت یونی........................... 28
2-6- تاثیر دما................................. 29
2-7- باز دارندهها.............................. 30
2-8- روشهای سینتیک............................. 30
2-8-1- روشهای دیفرانسیلی....................... 31
2-8-1-1- روش سرعت اولیه........................ 31
2-8-1-2- روش زمان ثابت ........................ 33
2-8-1-3- روش زمان متغیر........................ 34
2-8-2- روشهای انتگرالی......................... 35
2-8-2-1- روش تانژانت .......................... 36
2-8-2-2- روش زمان ثابت......................... 36
2-8-2-3- روش زمان متغیر........................ 37
2-9- صحت دقت و حساسیت روشهای سینتیکی........... 38
فصل سوم: کروم
مقدمه ......................................... 2
3-1- تعریف چرم................................. 4
3-2- لزوم پوست پیرایی ......................... 4
3-3- پوست پیرایی با نمکهای کروم (دباغی کرومی) . 5
3-4- تاریخچه پوست پیرایی با نمکهای کروم (III) .. 5
3-5- معادله واکنش با گاز گوگرد دی اکسید........ 6
3-6- شیمی نمکهای کروم (III) .................... 6
3-7- شیمی پوست پیرایی با نمکهای کروم (III)...... 7
3-8- عامل های بازدارنده (کند کننده)............ 8
3-9- مفهوم قدرت بازی........................... 8
3-10- نقش عاملهای کندکننده در پوست پیرایی با نمکهای کروم (III) 9
3-11- عاملهای مؤثر بر پوست پیرایی کرومی........ 10
3-12- رنگآمیزی چرم............................. 10
3-13- نظریه تثبیت رنگینهها..................... 11
3-14- صنعت چرم سازی و آلودگی محیط زیست......... 11
3-15- منبعها و منشأهای پساب کارخانههای چرم سازی 12
فصل چهارم : بخش تجربی
4-1- مواد شیمیایی مورد استفاده................. 40
4-2- تهیه محلولهای مورد استفاده................ 40
4-3- دستگاه های مورد استفاده................... 41
4-4- طیف جذبی.................................. 42
4-5- نحوه انجام کار .......................... 43
4-6- بررسی پارامترها و بهینه کردن شرایط واکنش . 44
4-7- بررسی اثر غلظت سولفوریک اسید ............. 45
4-8- بررسی اثر غلظت متیلن بلو ................. 48
4-9- بررسی اثر غلظت آسکوربیک اسید ............. 51
4-10- شرایط بهینه ............................. 54
4-11- روش پیشنهادی برای اندازه گیری کروم ...... 54
فصل پنجم: بحث و نتیجهگیری
5-1- مقدمه..................................... 55
5-2 – بهینه نمودن شرایط........................ 56
منابع ومآخذ.................................... 57
فهرست جداول
عنوان صفحه
جدول (3-1). طبقه بندی عمومی روشهای سینتیکی..... 26
جدول (4-1). مواد شیمیایی مورد استفاده.......... 40
جدول (4-2). تغییرات بر حسب غلظت های متفاوت H2SO4 46
جدول (4-3). تغییرات بر حسب غلظت های متفاوت MB 48
جدول (4-4). تغییرات برحسب غلظت های متفاوت AA 52
فهرست نمودارها
عنوان صفحه
نمودار (4-1) تشخیص طولموج ماکسیمم رنگ متیلنبلو. 42
نمودار (4-2) اثر تخریب رنگ متیلن بلو بدون حضور کروم (III) 44
نمودار (4-3). تغییرات بر حسب غلظت های متفاوت H2SO4 46
نمودار (4-4). تغییرات بر بر حسب غلظت های متفاوت MB 48
نمودار (4-5). تغییرات در برحسب غلظت های متفاوت AA 52
فهرست اشکال
عنوان صفحه
شکل (2-1) اجزاء دستگاهها برای اندازهگیری جذب تابش 21
شکل (3-1) سرعت واکنش نسبت به زمان.............. 23
شکل (3-2) روش سرعت اولیه....................... 32
شکل (3-3) روش زمان ثابت........................ 34
شکل (3-4) روش زمان متغیر....................... 35
شکل (3-5) روش تانژانت.......................... 36
فصل اول
اسپکتروفوتومتری
1-1- اساس اسپکتروفوتومتری جذبی:
این روش بر اساس عبور پرتوی از اشعه الکترو مغناطیس از درون نمونه و سنجش میزان جذب آن قرار دارد. هنگامی که اشعه الکترومغناطیس از داخل یک محلول میگذرد مقداری از آن بطور انتخابی جذب نمونه میشود. به طوری که شدت نور خارج شده کمتر از شدت نوری است که به محلول تابیده شده است. این پدیده در مورد جذب تابش های مرئی به وضوح دیده میشود.
مثلا اگر نوری سفید از میان محلول سولفات مس عبور داده شود، محلول آبی رنگ به نظر میرسد زیرا یونهای مس محلول جزء قرمز پرتو تابیده شده را جذب کرده و مکمل آن که آبی است از خود عبور میدهد.
اندازهگیری جذب تابشهای مرئی – ماوراء بنفش راه مناسبی را برای تجزیه تعداد بیشماری از گونههای آلی و معدنی فراهم میآورد. تابش در این نواحی دارای انرژی کافی برای انتقالات الکترونی الکترونهای والانس است. اگر نمونه در حالت گازی از اتم ها و یا ملکولهای ساده تشکیل شده باشد، طیف جذبی آن معمولاً مرکب از یکسری خطوط تیز و کاملاً مشخص است که مربوط به تعداد محدود انتقالات الکترونیکی مجاز میباشد.
طبیعت ناپیوسته فرآیند جذب، درجه بالایی از گزینش پذیری را به تجزیههایی میدهد که بر پایه چنین اندازهگیریهایی قرار گرفته باشند، در مقابل، طیفهای جذبی یونها و ملکولها در محلول معمولاً شامل نوارهای پهن میباشند که بخشی از آنها از همپوشانی انتقالات ارتعاشی و گاهی اوقات چرخشی بر روی انتقالات الکترونیکی ارتعاشی و گاهی اوقات چرخشی بر روی انتقالات الکترونیکی ناشی میشود. در نتیجه هر جذب الکترونیکی را یکسری خطوط پهن نزدیک به هم که به نظر پیوسته میرسند، همراهی میکنند. بعلاوه پهن شدن خطوط در نتیجه نیروهای بین ملکولی رخ میدهد. این نوع طیفها گزینش پذیری کمتری دارند.
1-2- جذب تابش:
وقتی که تابش از درون یک لایه شفاف جامد، مایع یا گاز عبور کند برخی از فرکانسها ممکن است توسط فرآیندی بنام جذب، بطور انتخابی حذف شوند. در اینجا انرژی بیشتر یا حالات تحریک شده ارتقاء مییابند.
اتمها یا مولکولهای تحریک شده دارای عمر نسبتا کوتاهی میباشند و تمایل دارند تا بعد از حدود 10 ثانیه به حالتهای عادی خود برگشت کنند. معمولا انرژی آزاد شده در این فرآیند در دستگاه بصورت گرما ظاهر میشود. مع ذالک در بعضی موارد گونههای تحرکی شده ممکن است یک تغییر شیمیایی را متحمل شوند که انرژی را جذب میکند (یک واکنش فتوشیمیایی) و در موارد دیگر تابش در شکل فلوئورسانس یا فسفرسانس (معمولاً با طول موجهای بلند تر) دوباره نشر میشوند.
اتمها مولکولها و یا یونها تعداد محدودی ترازهای انرژی کوانتیده گسسته دارند برای اینکه جذب تابش انجام گیرد انرژی فوتون تحریک کننده باید با تفاوت انرژی بین حالت عادی و یکی از حالتهای تحریک شده گونه جذب کننده یکی باشد.
از آنجایی که این تفاوت انرژی برای هر گونه منحصر به فرد است مطالعه فرکانسهای تابش جذب شده وسیلهای را برای مشخص کردن مواد سازنده نمونهای از ماده فراهم میآورد. برای این منظور یک منحنی از کاهش در توان نور تابنده (جذب) بصورت تابعی از طول موج یا فرکانس بطور تجربی ترسیم میشود. منحنیهای نمونهای از این نوع، طیفهای جذبی نامیده میشوند.
1-3- تکنیکها و ابزار برای اندازهگیری جذب تابش ماوراء بنفش و مرئی:
اندازهگیری جذب تابشهای ماوراء بنفش و مرئی راه مناسبی را برای تجزیه تعداد بیشماری از گونههای آلی و معدنی فراهم میآورد. تابش در این نواحی دارای انرژی کافی برای انتقالهای الکترونیکی الکترونهای والانس در لایه بیرونی است اگر نمونه در حالت گازی از اتمها و یا مولکولهای ساده تشکیل شده باشد طیف جذبی آن معمولاً مرکب از یک سری خطوط تیز و کاملاً مشخص است که مربوط به تعداد محدود انتقالات الکترونیکی مجاز میباشد. طبیعت ناپیوسته فرآیند جذب، درجه بالایی از گزینش پذیری را به تجزیههایی میدهد که بر پایه چنین اندازهگیریهایی قرار گرفته باشند. در مقابل طیفهای یونها و مولکولها در محلول معمولاً حاوی نوارهای پهن میباشند که بخشی از آنها از قرار گرفتن تغییرات انرژیهای ارتعاشی و گاهی چرخشی بر روی انتقالات الکترونی ناشی میشود. در نتیجه هر جذب الکترونی را یک سری خطوط آنقدر بهم نزدیک که به نظر پیوسته میرسند همراهی میکند. بعلاوه، پهن شدن خطوط در نتیجه نیروهای بین مولکولی رخ میدهد که این نیروها بین مولکولها یا یونهای بصورت نزدیک بستهبندی شده در یک محیط مادی فشرده، عمل میکنند. این نوع طیفها گزینش پذیری کمتری دارند. از طرف دیگر نوارهای پهن برای اندازهگیریهای کمی دقیق، مناسبترند.
1-4- جنبههای کمی اندازهگیریهای جذبی:
جذب تابش الکترومغناطیسی توسط گونه M میتواند به صورت یک فرایند برگشت ناپذیر دو مرحلهای تلقی شود که اولین مرحله این فرآیند را میتوان بصورت زیر نمایش داد.
در اینجا M* نشان دهنده ذره اتمی یا مولکولی در حالت تحریک شده است که از جذب فوتون ناشی میشود. طول عمر حالت تحریک شده کوتاه است (8-10 تا 9-10 ثانیه) و باوجود این حالت توسط یکی از چندین فرآیند آسایشی خاتمه داده میشود. متداولترین نوع آسایش شامل تبدیل تحریک به گرماست؛ یعنی،
گرما
آسایش میتواند از تجزیه M* جهت تشکیل گونههای جدید نیز ناشی شود. چنین فرآیندی را واکنش فوتوشیمیایی مینامند. ممکن است که آسایش منتج به نشر دوباره تابش بصورت فلوئورسانس یا فسفرسانس شود. مهم است به این نکته توجه شود که طول عمر M* بقدری کوتاه است که غلظت آن در هر لحظه تحت شرایط عادی، قابل صرفنظر کردن خواهد بود. بعلاوه، مقداری انرژی حرارتی تولید شده معمولاً قابل اندازهگیری نیست. بنابراین، اندازهگیریهای جذبی این حسن را دارند که حد اقل آشفتگی را در دستگاه تحت مطالعه ایجاد میکنند.
1-5- قانون بیر- لامبرت (Beer - Lamberts Law):
به سادگی میتوان دریافت که میزان جذب نور توسط یک گونه جاذب بستگی به تعداد یونها و یا ملکولهای جسم جاذب در مسیر عبور نور دارد و در نتیجه با افزایش غلظت ذرات جاذب، شدت جذب نیز افزایش مییابد. از طرفی هر چه قدر طول مسیر عبور نور از درون نمونه افزایش یابد، جذب نور با شدت بیشتری انجام خواهد گرفت. سومین عاملی که میزان جذب نور به آن بستگی دارد احتمال جذب فوتون توسط ذرات جاذب فوتونهاست به طوری که اجسام مختلف احتمالهای متفاوتی برای جذب پرتوی فوتونها از خود نشان میدهند.
حقایق بالا اساس قانون حاکم بر جذب است که تحت عنوان قانون بیرلامبرت (Beer- Lamberts Law) یا به طور مختصر قانون بیر معروف است. این قانون بیان میکند که میزان جذب نور توسط یک نمونه جاذب تابعی نمایی از غلظت نمونه و طول مسیر عبور نور از درون نمونه است. این مطلب را میتوان به طریق زیر بیان کرد:
پرتوی از تابشهای الکترومغناطیس را در نظر بگیرید که با شدت از درون محلولی حای N ذره جاذب عبور میکند. میزان جذب پرتو با تعداد ذرات جاذب موجود در مسیر عبور نور متناسب خواهد بود. اگر محلول را به قسمتهای کوچک و مساوی تقسیم کنیم در این صورت تغییر در شدت نور ( ) بستگی به تعداد ذرات جاذب موجود در این قسمت خواهد داشت .
در اینجا شدت پرتوی که به قسمتهای بعدی وارد میشود بخاطر جذب در قسمتهای قبلی مرتباً کاهش مییابد. بنابراین شدت جذب در هر قسمت به تعداد ذرات جاذب موجود در آن قسمت بستگی داشته و متناسب با شدت پرتوی خواهد بود که وارد آن قسمت میشود.
(1-1)
(1-2)
در این روابط K ضریب تناسب بوده و علامت منفی نشاندهنده کاهش شدت نور است. اگر تقسیمات ایجاد شده در محلول بسیار کوچک فرض شوند در این صورت معادله (1- 2) را میتوان به فرم دیفرانسیل و به صورت زیر نوشت.
(1-3)
با جابجایی معادله (1-3 ) و انتگرالگیری بین دو حد I و I0 (شدت اولیه و نهایی پرتو نور) و بین صفر و N برای تعداد ذرات جاذب موجود در مسیر عبور نور، این معادله بصورت زیر در میآید.
(1-4)
(1-5)
در این جا N به دو عامل غلظت جسم جاذب (C) و ضخامت محلول جاذب (B) بستگی دارد.
(1-6)
با جایگزینی معادله (1-6) در معادله (1-5) و تبدیل پایه لگاریتم به پایه اعشاری قانون بیر به صورت زیر بیان میشود.
(1-7)
که در آن a ضریب تناسب، b مسیر عبور نور از درون محلول و c غلظت محلول نسبت به گونه جاذب است. در این جا a که به نام جذب (Absorptivity) معروف است مشخصه گونه جاذب بوده و بعلاوه به طول موج پرتو تابیده شده بستگی دارد. بعبارت دیگر، قانون بیر تنها در مورد تابشهای تک رنگ (Monochromatic) صادق است. عبارت عموما بنام شدت جذب (Absorptivity) خوانده شده و علامت A را به آن اختصاص میدهند. در نتیجه معادله (1-7) خواهد شد:
(1-8) A=abc
در صورتی که غلظت بر حسب مول بر لیتر بیان شده باشد ضریب جذب به صورت نشان داده شده و بنام ضریب جذب مولی خوانده میشود. ارتباط خطی بین شدت جذب و طول مسیر در غلظت ثابت از مواد جذبکننده، یک قاعده کلی است که هیچ استثنایی در مورد آن مشاهده نشده است. از طرف دیگر وقتی که b ثابت باشد غالباً با انحرافهای دارای چنان طبیعت بنیادی میباشند که محدودیتهای حقیقی برای این قانون ایجاد میکنند. بعضی دیگر از انحرافات حاصل روشی است که با اندازهگیری جذب انجام میگیرد. یا در نتیجه تغییرات شیمیایی است که با تغییرات غلظت همراهند. دو مورد آخر گاهی به ترتیب به نامهای انحرافهای دستگاهی و انحرافهای شیمیایی شناخته میشوند. قانون بیر در شرح رفتار جذبی محلولهای رقیق موفقیت دارد. به این معنی که یک قانون حد است. در غلظتهای بالا (معمولاً بزرگتر از M01/0 متوسط فاصله بین گونههای جذب کننده به حدی کاهش مییابد که هر گونه بر روی توزیع بار گونههای همسایه خود اثر میگذارد. این تاثیر متقابل به غلظت بستگی دارد. وقوع این پدیده باعث انحرافهایی از رابطه خطی بین شدت جذب و غلظت میشود.
انحرافات از قانون بیر به خاطر وابستگی به ضریب شکست محلول(n) نیز به وجود میآید. بنابراین اگر تغییرات غلظت باعث تغییرات مهمی در ضریب شکست محلول شود، انحرافهایی از قانون بیر مشاهده خواهد شد. یک راه برای تصحیح این اثر جانشین کردن کمیت بجای در معادله میباشد. به طور کلی این تصحیح در مورد غلظتهای کمتر ازM 01/0حائز اهمیت نیست.
انحرافات شیمیایی از قانون بیر از اثر تجمع، تفکیک و یا واکنش گونههای جذبکننده با حلال، ناشی میشود. یک مثال کلاسیک از انحرافات شیمیایی در مورد محلولهای بافری نشده پتاسیم دیکرومات مشاهده میشود.
در بیشتر طول موجها، ضرایب جذب مولی یون دیکرومات و دو گونه یونی دیگر کاملاً متفاوتند. بنابراین، جذب هر محلول به نسبت غلظت شکلهای مونومر و دیمر بستگی دارد. مع ذالک این نسبت با رقیق کردن محلول به طور محسوسی تغییر میکند و سبب انحرافات بسیار مشهودی از خطی بودن ارتباط بین جذب و غلظت کل کروم میشود. با این حال جذب مربوط به یون دیکرومات مستقیما متناسب با غلظت مولی آن باقی میماند. این مسئله در مورد یون کرومات نیز صادق است. این حقیقت به آسانی میتواند توسط اندازهگیریها در محلول اسیدی قوی و یا بازی قوی، در حالی که یکی از این دو گونه اکثریت قاطعی دارد، اثبات شود. چون این انحرافات نتیجه جابجایی در تعادلهای شیمیایی هستند، لذا انحرافهای این سیستم از قانون بیر آشکارتر از مقدار واقعی خواهند بود.
در حقیقت این انحرافها را میتوان به آسانی از روی ثابتهای تعادل واکنشها و ضرایب جذب مولی یونهای دیکرومات و کرومات پیش بینی کرد. انحراف دستگاهی از قانون بیر، زمانی مشاهده میشود که تابش بکارگرفته شده تکرنگ نباشد. این مشاهده یکی دیگر از نمودهای خصلت حدی بودن این رابطه است استفاده از یک پرتو واقعاً تکرنگ برای اندازهگیریهای جذبی به ندرت عملی است، در نتیجه استفاده از تابش ممکن است منجر به انحرافهایی از قانون بیر میشود.
1-6- اجزاء دستگاهها برای اندازهگیری جذبی:
دستگاههایی که عبور یا جذب محلولها را اندازه میگیرند از پنج جز سازنده اصلی تشکیل شدهاند الف) یک منبع انرژی تابشی ثابت که شدت آن میتواند تغییر کند ب) یک وسیله که اجازه بکارگیری ناحیه محدودی از طول موجها را میدهد ج) ظروف شفاف برای نمونه و حلال د) یک آشکارساز تابش یا مبدل که انرژی تابشی را به یک علامت قابل سنجش که معمولا الکتریکی است تبدیلمیکند ه) یک شناساگر علامت. در شکل (1-1 ) ترتیب معمولی این اجزاء را نشان میدهد.
شکل (1-1) اجزاء دستگاهها برای اندازهگیری جذب تابش
شناساگر علامت در بیشتر دستگاههای اندازهگیریهای جذبی به یک درجهبندی خطی مجهز است که گسترده از 10 تا 100 واحد را میپوشاند. خواندههای مستقیم درصد عبور میتواند به این نحو بدست آید که ابتدا شناساگر طوری تنظیم میشود تا هنگام جلوگیری از رسیدن تابش به آشکار ساز توسط یک بستاور عدد صفر را نشان دهد. سپس در حالتی که پرتو از داخل حلال عبور میکند و بر روی آشکارساز میافتد شناساگر روی 100 تنظیم می شود این تنظیم به کمک تغییر دادن شدت منبع نور و یا حساسیت آشکار ساز انجام میگیرد. وقتی که ظرف محتوی نمونه در مسیر پرتو قرار داده شود مشروط بر اینکه آشکار ساز به طور خطی به تغییرات توان پرتو عکسالعمل نشان دهد شناساگر مستقیماً درصد عبور را بدست میدهد واضح است که یک مقیاس لگاریتمی میتوان روی شناساگر درج نمود تا اجازه خواندن مستقیم جذب را نیز بدهد.
طبیعت و پیچیدگی اجزاء مختلف دستگاههای جذبی بسته به ناحیه طول موج مورد نظر و چگونگی استفاده از دادهها به مقدار زیادی فرق میکنند. مع ذالک صرفنظر از درجه ظرافت وظیفه هر جزء ثابت میماند.