دسته بندی | ریاضی |
بازدید ها | 30 |
فرمت فایل | doc |
حجم فایل | 77 کیلو بایت |
تعداد صفحات فایل | 29 |
ریاضیات گسسته
مقدمه:
تاریخچه ریاضیات گسسته
پیشرفتهای سریع تکنولوژی در نیمه دوم قرن یبستم به ویژه پیشرفتهای شگفت آور علوم کامپیوتر، مسائل جدید را مطرح کردندکه طرح و حل آنها روشها و نظریه های تازه ای می طلبد. طبیعت متناهی و گسسته بسیاری از این مسائل موجب شده است که روشها و قواعد گوناگون شمارش از اهمیت خاصی بر خوردار شوند. توفیق مفاهیم لازم برای بررسی این مسائل به کار گیری منطق ریاضی و نظریه مجموعه ها را اجتناب ناپذیر ساخته است.
معادلات تفاضلی، روابط بازگشتی، توابع مولد، از دیگراجزایی هستند ک در حل مسائل مورد بحث نقشی اساسی دارند از طرف دیگر هنگام بررسی مسائل مربوط به مدارها، شبکه های حمل و نقل، ارتبا طات بازاریابی و غیره نقش جایگزین ناپذری گرا فها قا طعانه آشکار می شود.
ریاضیات گسسته مقدماتی متنی فشرده برابر یک دوره ریاضیات گسسته در سطحی مقدماتی برای دانشجویان کارشناسی علوم کامپیوتر و ریاضیات است. مولفه های اساسی برنامه کار ریا ضیات گسسته در سطحی مقد ماتی عبارتند از : ترکیبات نظریه گرا فها همراه با کار بردهایی در چند مسئاله استاندارد بهینه سازی شبکه ها، الگوریتمهایی برای حل این مسائل مهم اتحادیه سازندگان ماشینهای محاسبه و مهم کمیته برنامه ریزی یرای کارشناسی ریا ضی بر نقش حیاتی یک دوره درسی روشهای گسسته در سطح کارشناسی که دانشجویان را به حیطه ریاضیات ترکیباتی و ساختارهای جبری و منطقی وارد کند و روی ارتباط متقابل علوم کامپیوتر و ریاضیات تأکید داشته باشد صحه گذاشته اند.
جایگاه و ضرورت آموزش ریاضیات گسسته در نظام جدید دبیرستانی
در جریان تغییر نظام آموزش دوره های کارشناسی ریاضی در سالهای اخیر در دانشگاهها و موسسات آموزش عالی شاهد بودیم که درسهای جدید به تنا سب گرایشهای این رشته جایگزین درسهایی از نظام قبلی شدند. درس ریا ضیات گسسته نیز به ارزش 4 واحد درسی در این راستا بعنوان یکی از واحدهای پایه همه گرایشهای دوره کارشناسی ریاضی در نظر گرفته شده است. در کتابهای درسی ریا ضی نظام جدید دبیرستان نیز شاهد گنجاندن مفاهیم پایه ای مربوط به مباحث مقدماتی ریاضیات گسسته مانند نظریه گراف و دنباله ها و آمار و احتمال و ... می باشیم.
همچنین در دوره پیش دانشگاهی نیز درسی جداگانه تحت عنوان ریاضیات گسسته در نظر گرفته شده است. از آنجا که این شاخه از ریاضی نیاز مند بحث و تبادل نظر از لحاظ آموزشی و تعیین جایگاه و ارتباط آن با سایر شاخه ها و موضوعات ریاضی می باشد.
مطالبی که در این قسمت از بحث طرح خواهد شد بیشتر بر اساس مقاله ای است که تحت عنوان »آموزش ریاضی گسسته در دوره دبیرستان« توسط پروفسور آ.کاتلین
در مجلة بین المللی ریاضیات، علم و تکنولوژی 1990 درج شده است.
» انقلاب کامپیوتری، ریاضیات گسسته را همانند حساب دیفرانسیل و انتگرال برای علم و تکنولوژی ضروری ساخته است.«
محتوای کلی ریاضیات گسسته
محتوای دقیق یک دوره ریاضیات گسسته هنوز تا حدودی به طور مبهم باقیمانده است، زیرا هم کتابهایی که تاکنون در این زمینه به رشته تحریر در آمده و هم برنامه های درسی که در این مورد از سوی برنامه ریزان مباحث درسی ریاضی تهیه وتنظیم می شود، دقیقاَ نتوانسته اند موضوعات و قلمرو مباحث این درس را مشخص نمایند. موضوعاتی از قبیل نظریه اعداد و آمار و احتمالات و جبر خطی آنالیز عددی و مباحسات و برنامه سازیهای کامپیوتری ضمن اینکه در ریاضیات پیوسته جای پای محکمی دارند، در ریاضیات گسسته نیز خودنمایی و شکوفای روز افزون دارند. با این حال می توان گفت که ریاضیات گسسته شامل مباحثی است که مراحل مربوط به تغییرات گسسته و کمیتهای گسسته را توصیف می کند، در مقابل کالکوس که مراحل تغییرات به طور پیوسته را دنبال می کند پس به طور دقیق می توان گفت که ریاضیات گسسته کالکوس( حسابان) نیست.
به طور کلی یک دوره ریاضیات گسسته را می توان شامل عناوین زیر دانست:
منطق راضی و نظریه مجموعه ها ، ساختار های جبری از قبیل مباحث مربوط به گروهها و حلقه ها و میدانها و کواتریونها، شببکه ها جبر یون، نظریه گراف، روشهای ترکیبات و شمارش، نظریه اعداد محاسبات و الگوریتمهای عددی و تجزیه و تحلیل آنها، استقرار و روابط بازگشتی معادلات تفاضلی،آمار و احتمال با فضاهای نمونه ای گسسته.
تفاوت ریاضیات گسسته و حساب دیفرانسیل و انتگرال ( ریاضیات پیوسته)
در اساسی ترین سطح، مدلی برای بیان تفاوت بین ریاضیات گسسته و ریاضیات پیوسته ( یعنی حساب دیفرانسیل و انتگرال و شاخه هایی از آنا لیز که به حساب دیفرانسیل و انتگرال وابسته اند) تفاوت بین اعداد صحیح و اعداد حقیقی است. اعداد حقیقی، پایه همه ریا ضیاتی هستند که مانند حساب دیفرانسیل و انتگرال با خواص توابع پیوسته سر و کار دارند. در حالیکه ریاضیات گسسته بیشتر با توابعی سر و کار دارند که بر مجموعه نقاط گسسته تعریف شده اند( مثل دنباله ها) واز بسیاری جنبه ها به طور کامل با ساختمان پرشکوه آنالیز که بر پایه حساب دیفرانسیل بنا شده است و به طور عمده به توابع پیوسته می پردازد، تفاوت دارد. می دانیم که سیستم های فیزیکی از تعداد زیادی ذرات گسسته – اتمها و مولکولها – تشکیل شده است، در عمل پیوسته فرض کردن ماده فرض بسیار مناسب و دقیقی است. این سبب می شوند که اکثر پدیده ها ی طبیعی سیستمهای فیزیکی که از طریق حساب دیفرانسیل و انتگرال مدل سازی می شوند نوعاَ به صورت معادلات دیفرانسیل درآیند. این عملکرد آنچنان موفقیت شگفت انگیزی داشته است ک نتایج حاصل از آن تقریباَبرای همه مقاصد و اهداف ذاتاَ دقیق اند و موفقیت مهندسی وصنعت در قرنهای اخیر در سراسز دنیا مرهون این مدل سازی زیبا و دقیق و کار بردی ریاضی است، خصوصاَ از زمانی که پیدایش حسابگرهای رقمی و سپس کامپیوترها امکان بررسی و حل عددی معادلات دیفرانسیل و دیگر معادلات را فراهم نمودند. این آغاز شکوفایی آنالیز عددی بود نمونه متعارف از مسائلی که با استفاده از تکنیکهای آنالیز عددی حل می شوند این است که فرمول بندی یک مساله فیزیکی را با استفاده از حساب دیفرانسیل و انتگرال در نظر بگیریم و سپس آن را به شکل گسسته تبدیل کنیم تا با روشهای عددی قابل حل باشد. چنانچه در نمودار سیکلی مدل سازی ریاضی برای مسائل فیزیکی بیان گردید مرحله نهائی این پروژه زمانی قابل استفاده برای مسائل فیزیکی خواهد بود که جواب یا پیش بینی حاصلها از الگوی ریاضی ارزش عملی دانسته باشد و این امر جز به وسیله آنالیز عددی و محاسبات عددی مربوط به آن و تجزیه تحلیل خطاهای وارده و استفادهاز اصل دقت متغیر در روشهای ریاضی امکان پذری ننخواهد بود. از طزفی نیاز به ریاضیات گسسته، محدود به آنالیز عددی میشد نمی توانستیم ادعا کنیم که چنین ریاضیاتی نقش مقایسه کردنی با حساب دیفرانسیل و انتگرال دارد. آنالیز عددی با وجود کار بردهای وسیع، آن موضوعی تخصصی است نمی تواند تأثیر چشمکیری بر روند دآموزشی ریاضیات بگذارد هر چند آنالیز عددی مهمترین محل تلاقی ریاضیات پیوسته گسسته است امروزه تنها یک جزء کوچک از کار بردهای ریاضیات گسسته را دربرمیگیرد.
فهرست مطالب
- مقدمه
- جایگاه و ضرورت آموزش ریاضیات گسسته در نظام جدید دبیرستان 2
- محتوای کلی ریا ضیات گسسته 3
- تفاوت ریاضیات گسسته و حساب دیفرانسیل و ا نتگرال 4
- مرور تاریخی مباحث مهم ریاضیات گسسته 8
- مفهوم جاگشت 8
- اولین فن حدس زدن 8
- دیریکله 9
- تاریخچه اصل شمول و عدم شمول 9
- نظریه گراف 10
- مسئله پل کونیگسبرگ 10
- طریقه نمایش گراف 11
- گراف هامیلتونی 12
- رابطه های بازگشتی و مبادلات تفاضلی 19
- نمودار ترسیمی روشها و مدلهای گسسته و پیوسته ریاضی 25
- منابع 28
دسته بندی | ریاضی |
بازدید ها | 29 |
فرمت فایل | doc |
حجم فایل | 196 کیلو بایت |
تعداد صفحات فایل | 28 |
نامعادلات و نسبت های مثلثاتی
نماد علمی:
نماد علمی مدلی جدید برای عدد نویسی است که از آن برای سهولت بخشیدن به امر نوشتن و خواندن اعداد بسیار بزرگ و یا بسیار کوچک مانند محاسبة جرم سیارات و یا یک اتم از عنصر، استفاده می کنند.
نماد علمی اعداد مثبت را به صورت می نویسند که در آن K عددی است اعشاری بین یک و ده و n نیز عددی صحیح است.
مثال: اعداد زیر را به صورت نماد علمی بنویسد.
(الف (ب
نامعادله:
اگر یک نامساوی شامل متغیر باشد به آن نامعادله گفته می شود.
روش حل نامعادله:
حل نامعادله از بسیاری جهات شبیه حل معادله می باشد، ولیکن با این تفاوت که در حل نامعادله برای مجهول محدوده ای به عنوان پاسخ (جواب) بدست می آید و در معادله یک مقدار مشخص و معینی برای مجهول حاصل می گردد.
:مثال
قوانین و نکات مهم در مورد نامساوی
1-به طرفین یک نامساوی می توان عددی را اضافه و یا کم نمود.
2-می توان طرفین یک نامساوی را در عددی مثبت ضرب یا بر آن تقسیم کرد.
3-اگر طرفین یک نامساوی را در یک عدد منفی ضرب (تقسیم) کنیم جهت نامساوی عوض می شود.
4-اگر طرفین یک نامساوی هم علامت باشند (مثبت یا منفی باشند) و طرفین را عکس کنیم. جهت نامساوی عوض می شود.
حل نامعادلات کسری:
برای حل نامعادلات کسری مانند معادلات گویا عمل می کنیم. یعنی دو طرف نامعادله را در کوچکترین مضرب مشترک مخرجها ضرب می نمائیم تا نامعادله از حالت کسری به خطی درآید.
نامعادلات توأم: این گونه نامعادلات یا بصورت دو نامعادله مجزا می شوند و یا اینکه ما باید آنها را به صورت دو نامعادله مجزا درآوریم. و روش حل آن بدین صورت است که هرکدام از نامعادلات را حل نموده و در نهایت بعد از بدست آوردن پاسخ آنها، اشتراک جوابهای آن دو را به عنوان جواب یا پاسخ اصلی بیان می کنیم.
مثال: نامعادلات توأم زیر را حل نمائید.
مثلثات
درجه (D): اگر یک دایره را به 360 قسمت مساوی تقسیم کنیم؛ به هر قسمت یک درجه گویند.
گراد (G): اگر یک دایره را به 400 قسمت مساوی تقسیم کنیم؛ به هر قسمت یک گراد گویند.
رادیان (R): یک رادیان زاویه ای است که کمان مقابل به آن برابر شعاع دایره باشد. یعنی هر دایره رادیان است.
رابطة مقابل برقرار است
مثال 1:
100 گراد چند درجه و چند رادیان است؟
مثال 2:
مقدار زاویه ای را بر حسب رادیان بیابید که اگر به اندازه اش بر حسب درجه 15 واحد اضافه شود اندازة آن برحسب گراد بدست آید.
نسبتهای مثلثاتی:
برای بدست آوردن نسبتهای مثلثاتی، یک زاویه را با جهت مثبت محور xها درنظر می گیریم. و آنها را به صورت پائین تعریف می کنیم. «باید توجه داشت که نقطه A نقطه یا اختیاری برروی ضلع زاویه است و طول پاره خط OA برابر r فرض شده که همواره مثبت است»:
دسته بندی | ریاضی |
بازدید ها | 37 |
فرمت فایل | doc |
حجم فایل | 168 کیلو بایت |
تعداد صفحات فایل | 19 |
روش گرادیان
خلاصه :
در گذشته تعداد زیادی مدلهای مختلف با استفاده از مطالب مشاهده شده در جهت برآورد یا تنظیم ماتریسهای OD پیشنهاد شده بود . در حالیکه این مدلها از نظر فرمولاسیون ریاضی متفاوت بودند و از نظر تفسیر نیز متفاوت بودند . تمامی آنها در این حقیقت که استفاده از آنها برای شبکه های در اندازه واقعی مشکل است مشترک بودند . این ناشی از پیچیدگی محاسبات که در آنها درگیر است و احتیاج برای نرم افزار خیلی تخصصی برای انجام دادن آنها است .
در این مقاله ما یک مدل بر پایه گرادیان که قابل اعمال در شبکه های در بعد بزرگ است ارائه می کنیم . از نظر زیاضی مدل به شکل یک مسئله حداقل سازی محدب در جائیکه توسط دنبال کردن جهت نزولی ترین شیب ما می توانیم تضمین کنیم که ماتریس OD اصلی بیش از حد لازم تغییر پیدا نکرده است ، فرموله شده است .
ما نمایش می دهیم که چگونه این تنظیم مدل درخواستی می تواند بدون احتیاج به گسترش هیچگونه نرم افزار جدید اجرا شود . بلکه تنها توسط استفاده از اقلام موجود از یک بسته برنامه ریزی حمل و نقل قابل اجرا خواهد بود . از آنجائیکه یک قلم از مراحل تنظیم اساساً در دو انتخاب تعادلی در شبکه م.ورد نظر وجود دارند ، این روش حتی در شبکه ها و ماتریس ها در مقیاس بزرگ قابل اعمال است . تا به اینجا ، مدلها بطور موفقی در چندین پروژه ملی و شهری در سوئیس ، سوئد و فنلاند با استفاده از شبکه هایی تا حد 522 منطقه ترافیکی و 12460 سفر اعمال شده است . برخی از نتایج این مطالعه نشان داده خواهد شد .
کلمات کلیدی : برآورد ماتریس O-D ، انتخاب تعادلی ، روش گرادیان .
مقدمه :
تقریباً در تمامی کاربردهای برنامه ریزی حمل و نقل ، اطلاعات ورودی که بدست
می آید نشان از همه چیز مشکل تر و گران تر است . ماتریس درخواست مبدا - مقصد است . از آنجائیکه اطلاعات درخواستی بطور مستقیم قابل مشاهده نیست ، باید توسط تحقیقات دقیق و گران قیمت جمع آوری شود که درگیر با مصاحبه های در منزل و در جاده ها یا روشهای پیچیده علامت گذاری یا نشانه گذاری است . برعکس حج سفرهای مشاهده شده به آسانی و با دقت قابل قبولی توسط شمارش در نقاط خاصی از سفر یا دستی یا اتوماتیک با استفاده از دستگاههای شمارنده مکانیکی یا القایی قابل بدست آمدن است . بنابراین تعجب آور نیست که مقدار چشم گیری از تحقیقات در جهت بررسی احتمال برآورد یا بهبود یک ماتریس درخواست مبدا - مقصد با
حجم های مشاهده شده روی سفرهایی در شبکه مورد نظر انجام می شود .
تعداد زیادی از مدلها در گذشته پیشنهاد شده است . Vanvilet - (1980) willumsen , vanzuylen و (1981)willumsen - (1982)Nguyen - Vanzuylen و Branston (1982) - (1987)spiess . این مدلها در حالیکه خیلی از لحاظ تئوریکی جالب هستند ، تاکنون از لحاظ عملی ارتباط کمی داشته اند . این ناشی از زمان زیادی است که صرف محاسبات می شود و کاربرد در مسائل در بعد کوچک است . آنچه که ما خیلی خوب می دانیم این است که هیچکدام از این روشها بطور موفق به شبکه های در ابعاد وسیع و بزرگ با صدها منطقه ترافیکی و هزاران سفر شبکه ای اعمال نشده است . اکثر این روشهای سنتی به شکل مسائل اپتیمم سازی که در آنها تابع هدف هماهنگ با برخی توابع فاصله بین یک ماتریس درخواست اولیه و درخواست نتیجه شده g قابل فرموله شدن هستند . سپس مسائل محدود کننده در جهت نزدیک کردن حجم های انتخاب شده به حجم های مشاهده شده در نقاط شمارش استفاده می شوند . (توجه داشته باشید که برخی فرمولاسیون ها VanZuylen و (1982)Branston مسائل محدود کننده در آنها دخیل می شوند و بنابراین بعنوان اصطلاحات اضافی در توابع هدف ظاهر می شوند . )
در بخشهای زیر ما یک مدل جدید که مناسب برای کاربردهای در مقیاس بزرگ است را تشریح می کنیم . ما نشان می دهیم که چگونه این مدل بدون احتیاج به گسترش هیچگونه برنامه جدیدی قابل اجرا است ، اما به جای آن با استفاده از نسخه استاندارد از بسته برنامه ریزی حمل و نقل EMME/2 استفاده می شود . در نهایت ما نتایج برخی کاربردهای در مقیاس شهری و ملی را که در آنها مدل جدید ما اخیراً استفاده شده را خلاصه می کنیم .
روش گرادیان :
در این مقاله یک نوع جدید از مدلها پیشنهاد شده است . همچنین بعنوان یک مسئله اپتیمم سازی فرموله شده است . اما در اینجا تابع هدف برای اینکه حداقل سازی شود آنرا در فاصله بین حجمه ی مشاهده شده و انتخاب شده در نظر گرفته ایم . آسان ترین تابع از این نوع جذر جمع اختلاف ها ، که به مسئله حداقل سازی هدایتمان می کند می باشد .
دسته بندی | ریاضی |
بازدید ها | 29 |
فرمت فایل | doc |
حجم فایل | 245 کیلو بایت |
تعداد صفحات فایل | 21 |
کاربرد روش L1 – تقریب در معادلات انتگرال تکین
- مقدمه: معادلات انتگرال را میتوان با استفاده از فن LP – تقریب (به ویژه L1 تقریب) به طور موثری حل کرد. در این متن فن کلی را مورد بحث قرار میدهیم و سپس آن را با حل چند معادله انتگرال مختلف توضیح میدهیم. علاوه برامتیازات دیگر، این روش به طور موفقیت آمیزی در مورد معادلات انتگرال تکین و همین طور معادلات انتگرال قویاً تکین (نظیر انتگرال های آدامار یا متناهی – قسمت) تعمیم داده شده و به کار رفته است. در بحث حاضر، مروری بر این مطالعه ارائه میشود.
2- مقدمات ریاضی :
به طور کلی هدف این متن عبارت است از کاربرد فن LP- تقریب در حل یک معادله انتگرال فردهولم (خطی یا غیر خطی) نوع اول یا دوم به صورت
در معادلة بالا تابع هدایتگر و هسته K توابعی معلوم اند، در حالی که تابع مجهول است که باید آن را بیابیم پارامتر نیز معلوم است. مساله کلی LP- تقریب پیوسته را میتوان به صورت زیر فرمول بندی کرد:
تابع f معین روی یک بازة حقیقی مانند x همراه با یک تابع تقریب مانند F(A)، که به متغیر n پارامتری A=(a1 , …,an) در Rn وابسته است، مفروض اند.
در این صورت مساله LP- تقریب پیوسته به این معنی است که باید برداری مانند به گونه ای بیابیم که به ازای هر رابطة :
برقرار باشد.
جنبة اصلی مساله که باید مورد بحث واقع شود فرمول بندی مجدد مساله معادله انتگرال به صورت یک مساله LP- تقریب است. برای این منظور، فرض کنیم بتوان تابع جواب را با تابع F(A)، که ممکن است خطی یا غیر خطی باشد، تقریب زد. اگر این تقریب را در معادله انتگرال بگذاریم، رابطة زیر به دست میآید:
در آن صورت مساله تقریب را میتوان بر حسب LP- نرم به صورت:
بیان کرد که در آن F(A,x) نسبت به A روی Rn و نسبت به x روی [a,b] تعریف شده است. توجه داشته باشید که میتوان عبارت
را تابعی مانند تلقی کنیم که فقط به A بستگی دارد. پس میتوان مسأله تقریب را به عنوان یک مسأله مینیمم سازی غیر مقید وابسته به n متغیر an,...,a1 در نظر گرفت. بنابراین، J فقط باید نسبت به این متغیرها مینیمم شود. در نتیجه، با حل مسأله مینیمم سازی بالا امکان حل تقریبی معادله انتگرال وجود دارد.
برای مطالعة درباره جزئیات این فن (و از جمله آنالیز ریاضی) مراجع [19] , [18] تالیف De Klerk را ببینید.
در این مرحله دو تفسیرزیر ضروری اند:
مقادیر مخلتف P را میتوان مورد استفاده قرار داد. برای مثال به ازای P=1 مسأله منجر میشود به مسأله کمترین قدر مطلق و به ازای P=2 مسأله منجر میشود به مسألة کمترین مربعات. دلیلی وجودندارد که مقادیر مثبت دیگر P را در نظر نگیریم. حالت P=2 را بیشتر می شناسیم، در حالی که حالت P=1 کمتر آشناست. بنابراین احساس میشد که این حالت باید حاوی چالش های عددی جالبی (در رابطه با قدر مطلقی که در انتگرالده ایجاد می شود) باشد. توجه داشته باشید که خطی یا غیر خطی بودن انتگرالده بالا نسبت به A بستگی به تابع تقریب F(A) و هسته K دارد. در روش عددی ای که در اینجا مورد بحث قرار میگیرد تمایز خاصی بین خطی یا غیر خطی بودن قائل نمیشویم.
3- شیوة عددی و مثال ها :
فن عددی در اصل از دو شیوة عددی تشکیل شده است، یعنی شیوة مینیمم سازی و شیوة انتگرال گیری.
مینیمم سازی با استفاده ازیک الگوریتم استاندارد بهینه سازی انجام میگیرد. الگوریتم UMPOL در IMSL Library که بر پایة روش «سیمپلکس داون هیل» از نلدر و مید (به مثال [37] تالیف Press مراجعه کنید)، که گر چه زیاد سریع نیست اما این مزیت را دارد که بسیار قوی است و به مشتق گیری ها نیازی ندارد. در واقع ماشین سر به زیری است که معمولاً مقدار مینیمم یک تابع را به درستی مییابد . همچنین
De Klerk در [20] متذکر شده است که روش لووس- جاکولا [34] نیز روشی قوی است که به مشتق گیری ها نیازی ندارد و بررسی بیشتر جواب هایی که با بهره گیری ازاین روش بدست می آیند را مفید دانسته است.
انتگرال گیری عددی با استفاده از فن کوادراتور اتوماتیکی که ونتر و لاوری [3] با یک انتگرالده به صورت g(|f(x)|) آورده اند، انجام میشود. برای بدست آوردن این شیوه این محققین رویة انتگرال گیری تطبیقی استاندارد QAGE را تغییر داده اند (از QUAD PACK تالیف [35] Piessens ). در حین فرایند انتگرال گیری، با استفاده ازمقادیر موجود برای تابع، صفرهای تابع پیدا میشوند که از آنها (صفرهای تابع) به عنوان نقاط تقسیم در انتگرال گیری استفاده میکنیم.
در [20] ذکر شده است که ونتر ولاوری این روش را با موفقیت بالایی امتحان کرده اند، همچنین در پایان نامه دکتری ونتر نیز از بکارگیری این روش نتایج خوبی بدست آمده است [8].
De Klerk در [18] نتایج رضایت بخشی را با استفاده از این استراتژی تقریب بدست آورده است.
بر خلاف بسیاری روش های دیگر، با استفاده از روشی تقریبی نظیر روش یاد شده، در ساختن جواب نیز آزادی عمل بیشتری داریم (مثلا می توان توابع گویا و توابع مثلثاتی را بکار برد).
با اینکه داشتن تجربه در ارتباط با انتخاب یک تابع تقریب لازم است اما این امر موجب کنار گذاردن روش مذکور نمی شود.
De Klerk با در نظر گرفتن مثال های زیر، برخی از نتایج اصلی سال های گذشته را به بحث میگذارد.
مثال (1- ) پارامتر به سمت یکی از مقادیر ویژه مسأله میل میکند.
هسته جدایی پذیر زیر را در نظر بگیرید، داریم :
که در آن دو مجموعه از توابع مستقل خطی هستند.
در این حالت معادله انتگرال فردهولم به طور کلی یک و فقط یک جواب دارد. تنها استثنا وقتی است که یکی از مقادیر ویژه هسته را به خود میگیرد که در این حالت مسأله جواب ندارد (Tricomi [9]) . مثال بعد کارایی فن مذکور را نشان میدهد. معادله انتگرال فردهولم نوع دوم زیررا در نظر بگیرید.
دسته بندی | ریاضی |
بازدید ها | 24 |
فرمت فایل | doc |
حجم فایل | 89 کیلو بایت |
تعداد صفحات فایل | 26 |
کارایی الگوریتم مسیریابی شکسته شده برای شبکه های چندبخشی سه طبقه
چکیده:
این مقاله شبکه های سویچنگ سه طبقه clos را از نظر احتمال bloking برای ترافیک تصادفی در ارتباطات چند بخشی بررسی می کند حتی چنانچه سویچ های ورودی توانایی چند بخشی را نداشته باشند و نیاز داشته باشند به تعداد زیاد وغیرمجازی از سویچهای میانی برای فراهم کردن این مسیرهایی که پلاک نشوند مطابق درخواستها مدل احتمالی این دید را به ما میدهد که احتمال پلاک شدن در آن بسیار کاهش یافته و تقریبا به صفر می رسد در ضمن اینکه تعداد سویچهای میانی بسیار کمتر از تعداد تئوریک آن است.
در این مقاله یک الگوریتم مسیریابی شکسته شده را فعال پلاک شدن در آن معدنی شده است برای اینکه قابلیت مسیریابی با fanout بالا را برآورده کند. ما همچنین مدل تحلیلی را بوسیله شبه سازی کردن شبکه بر روی
فهرست اصطلاحات: چند بخشی، ارزیابی عملکرد، مدل احتمالی، شبکه های سویچینگ
معدنی:
شبکه های clos بخاطر انعطاف پذیری وساده بود نشان بطور گسترده در شبکه های تلفن، ارتباطات Data و سیستمهای محاسبه ای موازی بکار برده می شوند. کارایی خیلی از برنامه های کاربردی بوسیله یک عمل چند بخشی موثر که پیغامی را به چند دریافت کننده بصورت همزمان می فرستد بهتر می شود. به عنوان مثال در سیستمهای چند پردازنده ای یک متغیر همزمان سازی قبل از آنکه پرازنده ا بکارشان ادامه دهند باید فرستاده شود. همانطوریکه برنامه های کاربردی به خدمات چند بخشی موثر که توسعه پیدا کرده نیاز دارند در طی چند سال اخیر حتی در شبکه های با دامنه عمومی طراحی سیستمهای سویچینگ که بطور موثر بادرخواستهای چندبخشی سروکار دارد نیز اهمیت پیدا کرده است.
تلاشهای زیادی برای سازگار کردن شبکه های clos (که در ابتدا برای ارتباطات نقطه به نقطه توسعه پیدا کرده بودند) برای آنکه با ارتباطات چند بخشی وفق پیدا کنند انجام شده است.شبکه clos چند بخشی با قابلیت پلاک نشدن هنوز بسیار گران در نظر گرفته میشوند برای همین کارایی آن را روی پیکربندی های کوچکتر از معمول در نظر نمی گیرند.
یک شبکه clos سه طبقه بوسیله نشان داده می شود که سویچهای طبقه ورودی m سویچهای لایه میانی و سویچهای لایه خروجی است، هر کدام از سویچهای لایه ورودی تاپورت ورودی خارجی دارند و به هر کدام از سویچهای لایه میانی اتصال دارد بنابراین ارتباط بین طبقه ورودی وطبقه میانی وجود دارد . هر سویچ طبقه خروجی عدد پورت خروجی دارد و به هر کدام از سویچها یک درخواست اتصال نشان داده میشود به شکل c(x,y) که در آن x یک سویچ ورودی و را یک مجموعه مقصد از سویچهای خروجی است.
چندی /1 درجه fanout درخواست نامیده می شود. به یک مجموعه از درخواستهای اتصال سازگار گفته می شود اگر جمع تصادفات هر کدام از سویچهای ورودی از بزرگتر نباشد وجمع تصادفات کدام از سویچهای خروجی بزرگتر از نباشد.
یک درخواست با شبکه موجود سازگار است اگر تمام درخواستها و همچنین درخواست جدید سازگار باشد در شکل (1) برای نمونه با پیکربندی موجود سازگار است ولی سازگار نیست جون سویچ خروجی شماره 1 درخواست را قبلا حمل کرده است. یک خط سیر برای درخواست اتصال جدید یک درخت است که سویچ ورودی x را به مجموعه /1 تا سویچ خروجی از میان سویچهای میانی متصل می کند. یک درخواست اتصال قابل هدایت است اگر یک مسیر روی تمامی اتصالات بین طبقه ای پیدا کند وبتواند ردر انحصار قرار دهد.
ماسول و جدول برای اولین بار nonblacking محض /1 وشبکه clos سه طبقه قابل بازآیی را برای اتصالات چندگانه که اتصالات بین هر تعداد از سویچهای ورودی وسویچیهای خروجی بوجود می آورد را معدنی کردند.
هرانگ قابلیت بازایی وخواص nonblaking شبکه های clos چند بخشی را تحت شرایط مختلف ومحدودیت های fonout مورد بررسی قرار داد
یانگ وماسول اولین تحلیل خود را که اجازه می داد سویچهای هر طبقه برای کاهش نیازهای سخت افزاری همانند سازی کند را انجام دادند آنها ثابت کردند که اگر تعداد سویچهای میانی o(nlogr/logloyr) باشد آنگاه شبکه nonblacking بوجود آمده است که تمام درخواستها از حداکثر k عدد سویچ میانی استفاده می کند که k نیز ثابت می باشد. علاوه بر مطالعات شبکه های clos چندبخشی nonblamking چندین تلاش رویکرد برای تعیین رفتاری blacking شبکه های swiching برای ارتباطات نقطه نقطه وجود داشت.
این تحقیق مدلهای احتمالی را را که بصورت نزدیکی رفتار شبکه های سویچینگ سه طبقه ای را تخمین می زند را تامین می کند.
برای ارتباطات چند بخشی هرانگ ولین یک مدل blocking از درخواستهای چند پخشی قابل بازآرایی را در شبکه clos نقطه به نقطه nonblocking با فرمول c(n,r,2n-1) پیشنهاد کردند. یانگ ووانگ رفتار blaocking درخواستهای چند پخشی را روی شبکه clos بوسیله بسط دادن مدل بررسی کردند