دسته بندی | ریاضی |
بازدید ها | 31 |
فرمت فایل | doc |
حجم فایل | 494 کیلو بایت |
تعداد صفحات فایل | 18 |
عدد طلایی
دنیای اعداد بسیار زیباست و ما می توانیم در آن شگفتی های بسیاری را بیابیم. در میان برخی از آنها اهمیت فوق العاده ای دارند، یکی از این اعداد که سابقه ی آشنایی بشر با آن به هزاران سال پیش از میلاد می رسد، عددی است به نام نسبت طلایی یا Golden Ratio.
اگر پاره خطی را در نظر بگیریم و فرض کنیم که آنرا بگونه ای تقسیم کنیم که نسبت بزرگ به کوچک معادل کل پاره خط به قسمت بزرگ باشد، اگر معادله ساده یعنی را حل کنیم. ( کافی است به جای b عدد یک قرار دهیم، بعد a را بدست آوریم)، به نسبتی معدل تقریباً 1/61803399 یا 1/618 خواهیم رسید. شاید باور کردنی نباشد، اما بسیاری از طراحان و معماران بزرگ برای طراحی محصولات خود امروز از این نسبت طلایی استفاده می کنند، چرا که به نظر می رسد ذهن انسان با این نسبت انس دارد و راحت تر آن را می پذیرد.
این نسبت نه تنها توسط معماران و مهندسان برای طراحی استفاده می شود، بلکه در طبیعت نیز کاربردهای بسیاری دارد.
به نسبت بین خط های صورت این تصویرها نسبت طلایی گفته می شود.
اهرام مصر
یکی از قدیمی ترین ساخته های بشری است که در آن هندسه و ریاضیات بکار رفته شده است.
مجموعه اهرام GIZA در مصر که قدمت آنها به بیش از 2500 سال پیش از میلاد می رسد، یکی از شاهکارهای بشری است، در آن نسبت طلایی بکار رفته است. به این شکل نگاه کنید که در آن بزرگترین هرم از مجموعه ی هرم GIZA خیلی ساده کشیده شده است.
مثلث قائم الزاویه ای که با نسبت های این هرم شکل گرفته شده باشد به مثلث قائم مصری یا Egyptian Triangle معرف هست و جالب اینجاست که بدانید نسبت وتر به ضلع هم کف هرم معادل با نسبت طلایی یعنی دقیقاً 1/61804 میباشد. این نسبت با عدد طلایی تنها در رقم پنجم اعشار اختلاف دارد، یعنی چیزی حدود یک صد هزارم . حال توجه شما را به این نکته جلب می کنیم که اگر معامله فیثاغورث را برای این مثلث قائم الزاویه بنویسیم به معادله ای مانند خواهیم رسید که حاصل جواب آن همان عدد معروف طلایی خواهد بود. معمولاً عدد طلایی را با نمایش می دهند.
طول وتر برای هرم واقعی حدود 356 متر و طول ضلع مربع قاعده حدوداً معادل 440 متر می باشد، بنابریان نسبت 356 بر 320 معادل نیم ضلع مربع، برابر با عدد 1/618 خواهد شد.
کپلر ( Gohannes Kepler 1571-1630)
منجم معروف نیز علاقه ی بسیاری به نسبت طلایی داشت، به گونه ای که در یکی از کتاب های خود اینگونه نوشت: "هندسه دارای دو گنج بسیار با اهمیت می باشد که یکی از آنها قضیه ی فیثاغورث و دومی رابطه ی تقسیم یک پاره
خط به نسبت طلایی می باشد. اولین گنج را به طلا و دومی را به جواهر تشبیه کرد."
تحقیقاتی که کپلر راجع به مثلثی که اضلاع آن به نسبت اضلاع مثلث مصری باشد به حدی بود که امروزه این مثلث به مثلث کپلر نیز معروف می باشد. کپلر پی به روابط بسیار زیبایی میان اجرام آسمانی و این نسبت طلایی پیدا کرد.
آشنایی با سری فیبونانچی
باورکردنی نیست، اما در سال 1202 لئونارد فیبونانچی توانست به یک سری از اعداد دست پیدا کند، که بعدها به عنوان پایه برای بسیاری از رابطه های فیزیک و ریاضی استفاده شد، کافی است از عدد صفر و یک شروع کنید، آنها را کنار هم بگذارید و عدد بعدی را از جمع کردن دو عدد قبل بدست آورید، به سادگی به این رشته از اعداد خواهید رسید:
البته برخی از ریاضی دانان عدد صفر را جزو رشته فیبونانچی نمی دانند و یا حداقل آن را جمله ی صفرم سری می دانند، نکته ای که تعجب برانگیز است آنکه اگر از عدد سوم نسبت اعداد این سری را به عدد قبلی حساب کنیم خواهیم داشت:
1/1, 2/1, 3/2, 5/3, 8/5, 13/8, 21/13, 34/21, 55/34, 89/55, 144/89.000
و یا :
1, 2, 1.5, 1,666, 1.6, 1,625, 1.6153, 1.6190, 1.6176, 1.6181, 1.6179
بله بنظر می رسد که این رشته به سمت همان عدد طلایی معروف میل میکند. بگونه ای که اگر نرخ عدد چهلم این رشته را به عدد قبلی حساب کنیم به عدد 1.618033988749895 می رسیم که با تقریب 14 رقم اعشار نسبت طلایی را نشان می دهد.
بعدها محاسبات و استدلال های ریاضی نشان داد که این سری همگرا به سمت نسبت طلایی می باشد و جمله عمومی آنرا با بتقریب می توان اینگونه نمایش داد :
دسته بندی | ریاضی |
بازدید ها | 25 |
فرمت فایل | doc |
حجم فایل | 184 کیلو بایت |
تعداد صفحات فایل | 19 |
مبحث تابع
تعریف زوج مرتب:
هر دستة متشکل از دو عنصر با ترتیب معین را یک زوج مرتب گویند. مانند زوچ مرتب (x,y) که x را مؤلفه اول مختص اول یا متغیر آزاد گویند و y را مؤلفه دوم مختص دوم متغیر وابسته( تابع) یا تصویر گویند و نمایش هندسی آن نقطهای در صفحة مختصات قائم است که طول آن برابر x و عرض آن برابر y است.
تساوی بین دو زوج مرتب:
دو زوج مرتب با یکدیگر مساویاند اگر دو نقطه اگر مؤلفههای نظیربهنظیر آنها با هم برابر باشند یعنی:
مثال: از تساوی زیر مقادیر x,y را بیابید:
تعریف حاصلضرب دکارتی دو مجموعه :
حاصلضرب دکارتی در مجموعه B,A که با نماد نشان داده میشود عبارت است از مجموعه تمام زوج مرتبههائی که مؤلفة اول آنها از A و مؤلفه دوم آنها از B باشد یعنی:
مثال: حاصلضرب دکارتی درهر یک از مثالهای زیر را بصورت مجموعهای از زوجهای مرتب بنویسید و نمودار آن را در دستگاه محورهای مختصات قائم رسم نمائید:
(1
(2
نمودار حاصلضرب دکارتی مجموعههای داده شدة زیر را در دستگاه محورهای مختصات قائم رسم کنید.
ویژگیهای حاصلضرب دکارتی مجموعهها :
فضای دوبعدی ( صفحه) 3) , ,
4) , ,
5) مثال:
تضاد زوجهای مرتب:
تعریف ریاضی رابطه:
اگر B,A دو مجموعه دلخواه باشند هر زیرمجموعه از حاصلضرب دکارتی را یک رابطه از A در B گویند اگر f یک زیرمجموعه از باشد گویند. F یک رابطه از A در B است به عبارت دیگر رابطه Fمجموعه تمام زوج مرتبهای است که مؤلفههای اول و دوم آن با شرایطی خاص( قانون یا ضابطة خاص) به یکدیگر مربوط میشوند. به بیان دیگر رابطه f زیرمجموعهای از است که با ضابطه یا قانون خود مختص اول زوجهای مرتب را به مختص دوم آنها پیوند میدهد مانند رابطه پدر و فرزندی رابطه مالک و مستأجری رابطه عبد و مولا رابطه اعداد با مجذور آنها.
مفهوم تابع: تابع بیانگر چگونگی ارتباط مقدار یک کمیت(متغیر وابسته y= ) به مقدار یک کمیت دیگر( متغیر مستقل x= ) است مفهومی که خواص آن، انواع آن، نمودار آن حد و پیوستگی آن؛ مشتق و انتگرالگیری از آن و… نه تنها در ریاضیات بلکه درهمه علوم و فنون نقش مهمی ایفا میکند و در زندگی خود نیز به نمونههایی برمیخوریم که مقدار یک کمیتی( کمیت تابع) به مقدار کمیت دیگری( کمیت آزاد) وابسته است؛
مثال: متغیرهای وابسته (y) و متغیرهای مستقل(x) را در مثالهای زیر مشخص کنید:
1) افزایش طول یک فنر به وزنهای که به آن آویزان میشود بستگی دارد.
جواب: « افزایش طول فنر» = متغیر وابسته(y ) و « مقدار وزنه» = متغیر آزاد (x)
2) »هر که بامش بیش، برفش بیشتر»
جواب:« مقدار برف انباشتهشده روی پشتبام» = متغیر وابسته(y ) و« مساحت پشتبام»= متغیر آزاد
3) مقدار مکعب هر عددی به آن عدد وابسته است.
جواب: مکعب عدد«= متغیر وابسته(y ) و « خود عدد»= متغیر مستقل(x )
تذکر: با توجه به اینکه هر تابع یک رابطه است( عکس این مطلب درست نیست یعنی هر رابط ممکن است تابع نباشد.
تعریف تابع:
اگر رابطهf بصورت مجموعه زوجهای مرتب باشد آنگاه رابطةf را تابع گویندهرگاه هیچ دوزوج مرتب متمایزی در f دارای مؤلفههای اول یکسان نباشند یعنی:
دسته بندی | ریاضی |
بازدید ها | 22 |
فرمت فایل | doc |
حجم فایل | 186 کیلو بایت |
تعداد صفحات فایل | 38 |
ماتریس
مقدمه :
شاید یکی از کاربردی ترین مفاهیم و مباحث ریاضی ، مبحث مربوط به ماتریس است که از آن به عنوان ابزاری قوی در مباحث دیگر ریاضیات و بخصوص در فیزیک کوانتم و علومی چون آمار ، حسابداری و ........ استفاده می شود . امروزه ماتریس ها یکی از ابزارهای اساسی محاسبات علمی ریاضیات به حساب می روند و در واقع ، نقش امروز ماتریس ها در ریاضیات و پیشبرد آن ، مانند نقش دیروز اعداد است . ریاضیات کاربردی ، در تمام شاخه ها ، نیاز مبرم به ماتریس دارد ، به خصوص که در بیش تر موارد حل مسائل عملی به نوعی با حل دستگاه های معادلات یا نامعادلات پیوند می خورد که حل چنین دستگاه هایی با ماتریس ها ارتباط تنگاتنگ دارد . ا زاین ور ، این مبحث حتی در سطح دبیرستان نیز از اهمیت ویژه ای برخوردار است ، به طوری که هم در کتاب درسی ریاضیات سال دوم ، هم در هندسه ی تحلیلی و جبر خطی دوره ی پیش دانشگاهی و هم در کتاب های ریاضی عمومی رشته های مهندسی از آن استفاده شده است . لذا ، با مطالعه و یادگیری مفاهیم مربوط به ماتریس ها و کاربرد آن ها ، یکی از جالب ترین و در عین حال ، مفید ترین موضوعات ریاضی بررسی خواهد شد .
تعریف ماتریس : بر اساس تعریفی که اولین بار یک ریاضیدان انگلیسی به نام «کیلی» برای ماتریس ارائه داد ، «ماتریس ، آرایشی از اعداد حقیقی است که روی سطرها و ستون های منظم قرار گرفته و با دو کروشه محصور شده باشند .» هر یک از اعداد حقیقی موجود در یک ماتریس را یک درایه یا عنصر آن ماتریس می نامند .
هر یک از آرایش های زیر یک ماتریس است : (ماتریس ها را با حروف بزرگ نشان می دهیم . )
هر درایه در یک ماتریس ، در تقاطع یک سطر با یک ستون قرار دارد ، مثلاً در ماتریس A ، عدد 2 در تقاطع سطر اول با ستون دوم قرار دارد و یا در ماتریس B ، عدد در تقاطع سطر دوم و ستون دوم واقع است که در واقع ، جایگاه هر درایه در هر ماتریس با همین تقاطع ها مشخص و برای هر درایه در هر ماتریس دو اندیس در نظر گرفته می شود که اولی سطر و دومی ستون مربوط به آن درایه را معلوم می کند . برای مثال ، وقتی می نویسیم یعنی درایه ی روی سطر دوم و ستون سوم و برای هر ماتریس نیز دو اندیس در نظر گرفته می شود که اندیس اول ( از چپ ) تعداد سطرها و اندیس دوم تعداد ستون های آن ماتریس را نشان می دهد . برای مثال اگر B ماتریسی با دو سطر و سه ستون باشد ، می نویسیم و می گوییم « B ماتریسی 2 در 3 » یا «از مرتبه ی 2 در 3 » است ، و در حالت کلی اگر A ماتریسی باشد ، داریم :
دسته بندی | ریاضی |
بازدید ها | 16 |
فرمت فایل | doc |
حجم فایل | 107 کیلو بایت |
تعداد صفحات فایل | 40 |
روش های تکراری پیش فرض در مسائل گسسته خطی از منظر معکوس« بایسیان»
چکیده:
در این مقاله ما با مسائل گسسته خطی که با روشهای تکراری قابل حل می باشد از نظر آماری معکوس بایسیان روبرو خواهیم شد پس از بررسی اجمالی روش های تکراری عمده برای حل مسائل ناقص خطی و برخی نتایج آماری اولیه و روشهای آماری استراتژیهای ترسیمی را مورد تجزیه و تحلیل قرار خواهیم داد. نمونه های محاسبه شده رابط بین این دو را تشریح می کند.
کلمات کلیدی: حل های معکوس( امتحانی) فضای فرعی« کریلا» و روش معکوس« بایسیان»
پیش فرضها مسائل ناقص
(1) مقدمه
استفاده از روشهای تکراری برای حل سیستمهای خطی معادلات روشی انتخابی است هنگامی که ابعاد سیستم آنقدر بزرگ باشد که
فاکتورسازی ماتریس A را غیر عملی سازد یا هنگامی که ماتریس آن بطور صریح مجهول باشد و ما بآسانی بتوانیم حاصلضرب آن را با هر گونه بردار معلومی محاسبه کنیم. هنگامی که سیستم خطی در رابطه با گسستگی مسائل خطی ناقص سمت راست b اطلاعات و فرضیات را مورد بررسی قرار دهد، نقش مسائل متوالی در ماتریس A افزایش می یابد و بنابراین حل مسائل برای یافتن خطا در داده ها مهم و ضروری به نظر می رسد. بمنظور حفظ خطا در نشان دادن صورت b برخی از روشهای بدست آوردن مجهولات بایستی مشخص شود در زمینه روشهای معکوس بمنظور حل مجهولات بواسطه توقف کردن تکرار قبل از همگرایی در حل سیستم های خطی بهتر است به تکرار های ناقص رجوع شود. تجزیه و تحلیل کامل در ویژگی های معلوم کردن به روش CG در معادلات کامل هنگامی که می توان از معیارهای بازدارندگی مناسب استفاده کرد در بخش ] 10 [ قابل بحث می باشد.
در صورتیکهM ماتریس معکوس باشد، براساس ویژگی های طیفی MA همگرایی سریعترین برای روشهای حل تکراری ایجاد می کند. ماتریس M ماتریس شرطی سمت چپ برای سیستم خطی(1) نامیده می شود قابلیت امتحان ماتریس M نشان میدهد که سیستم های (1) و (2) راه حل یکسانی دارند انتخاب یک ماتریس شرطی مقدم M نشان می دهد که چنین ماتریسی نه تنها ویژگی های طیفی ماتریس A را تغییر می دهد بلکه بمنظور حل سیستم های خطی با مضروب ماتریس A بآسانی می توان آن را در کل بردار ضرب کرد. در حقیقت در هنگام حل سیستم 2 به روش تکرار لازم است ضرب ماتریس در بردار را در فرم مورد محاسبه قرار دهیم. سیستم خطی (1) با معادله زیر قابل جانشینی است.
(3)
ماتریس معکوس
در صورتی کهM ماتریس معکوس باشد در این مورد M ماتریس شرطی اولیه را ست نامیده می شود و از آنجائیکه هنگام حل سیستم خطی لازم است ضرب ماتریس در بردار را که بصورت نشان داده می شود محاسبه کنیم حل سیستم خطی با ضریب ماتریس A نیز ضروری به نظر می رسد یکی از شرایط برای روشهای حل تکراری در سیستم های خطی را می توان در بخش 19 مشاهده کرد زمانی که سیستم خطی از پراکندگی مسائل ناقص خطی ناشی می شود لازم و ضروری است که این مسائل را حل کرد در عوض تغییر مسیر از شتاب دهنده های همگرا به یک افزایش دهنده کیفیت در حل مسائل محاسبه شده به هیچ روش امکان پذیر نمی باشد. علاوه بر آن سمت و جهتی که معکوس ماتریس بکار می رود بسیار مهم است.در حل تکراری مسائل خطی یک شرط اولیه سمت راست مرتبط با داده های کاملاً منسجم و موجود در مورد حل در حالیکه شرایط لازم الاجرای سمت چپ داده هایی در مورد تمایز ویژگی های آماری ارائه می دهد در حالی که کاربرد این فرضیات در رابطه با روشهای تکراری در سیستم های خطی مشابه و مسائل خطی ناقص بر هم مرتبط است ساخت این پیش فرضیات مناسب کاملاً متغیر بوده و در موارد بعدی برای فهم اینکه چگونه این پیش فرضیات بر کیفیت حل مسائل اثر گذارنده مهم بنظر می رسد.
برخی انواع داده های قبلی در مورد حل ممکن است قابل تغیر به یک تغییرات مناسب در جهت حل های تکراری باشد بعنوان مثال داده هایی در مورد حد های بالایی و پائینی در حل اعداد صحیح بواسطه مراحل ترسیم سازی، پس از ترسیم روش تقریبی روش های تکراری با استفاده از روش های حل ترسیمی بعنوان یک سری حدسیات اولیه جدید آغاز می شود رجوع شود به] 3 [ فرایند ادامه می یابد تا یک معیاری برای توقف حاصل شود این امر باعث می شود روشهای مؤثر محاسباتی نسبت به مدل های استاندارد تأثیر بهتری داشته باشد.
این مقاله به صورت زیر تنظیم شده است در بخش 2 ما مختصراً برخی از تحقیقات در زمینه روشهای تکراری کریلا و را برای مسائل ناقس و گسسته خطی مورد بررسی قرار می دهیم بخس 3 یک بررسی اجمالی در مورد نتایج آماری مورد نیاز می باشد بخش 4 رابطه بین پیش فرضیات و مسائل معکوس آماری« بایسیان» را با اطلاعات آماری در زمینه حل و نقص را عنوان میکند بخش 5 چگونگی استفاده از استراتژیهای ترسیمی را باری فائق آمدن بر حدهای بالایی و پائینی در حل مسائل نشان میدهد. در بخش 6 ما دیدگاهی را مورد چگونگی انتخاب حدهای مناسب برای یک مجموعه مسائل خطی ناقص هنگامی که راه حل هایی برای حل حدها بخوبی شناخته نشده باشد و چگونگی فائق آمدن بر آن ها را با پیش فرضیات سمت راست مورد بررسی قرار می دهیم. رابطه بین پیش فرضیات سمت چپ و ویژگی های آماری در بخش 7 می آید بخش 8 نمونه های حل شده ای از عملکرد پیش فرض ها و استراتژی های ترسیمی را در بخشهای پیشین ارائه می دهد. نتایج و رئوس مطالب در بخش 9 موجود است.
دسته بندی | ریاضی |
بازدید ها | 11 |
فرمت فایل | doc |
حجم فایل | 805 کیلو بایت |
تعداد صفحات فایل | 55 |
ریاضیات و بند کفش
آیا هیچ گاه از خود پرسیده اید که چه کسی یک ریاضیدان است؟ چندین سال پیش حرفه ای برای این پرسش در ذهن من ایجاد شد و به نظرم رسید که ریاضیدان شخصی است که قدرت تشخیص فرصتهای موجود برای به کار گیری ریاضیات را دارد و این در حالی است که بقیه افراد متوجه این فرصتها نیستند. در این مورد می توان بند کفش را در نظر گرفت آقای جان هاتسون استاد علوم کامپیوتر دانشگاه کارولینای شمالی مقاله ای با عنوان
» معمای بند کفش« به رشته تحریر درآورده است. حداقل سه نوع آرایش کلی برای بستن بند کفش وجود دارد که عبارت است از نوع امریکایی(زیگراگ)، نوع اروپایی و نوع کفاشی(ایرا نی). هر چند از نظر خریدار شکل ظاهری و زمان لازم برای گره زدن دارای اهمیت است ولی برای تولید کنندگان کفش، موضوع مهمتر آن است که کدام یک از آرایشها دارای کوتاهترین طول بوده و در نتیجه کمترین هزینه را در بر خواهد داشت؟ در این مبحث به منظور یافتن طول بند فقط اندازه خطوط مستقیم مورد توجه قرار گرفته است. فزض شده است که طول مورد نیاز برای گره زدن در تمامی آرایشها یکسان است و از این رو در نظر گزفته نشده است. توصیه میشود از چشمهای کسی ه کفش را پوشید ه است به کفش بنگرید و در این راستا منظور از ردیف بالای سوراخها آنهایی است که نزدیک پا باشند.نکته دیگر اینکه در اینجا ضخامت بند (ضخامت خط) معادل صفر و سوراخها به عنوان نقطه فرض شده اند. حال اگر به دقت به مساله بنگریم، خواهیم دید که طول بند به سه پارامتر بستگی دارد که در روی شکل نیز مشخص شده اند: 1- تعداد سوراخها(n ) 2- فاصله بین سوراخهای متوالی (d ) 3- فاصله بین سوراخها ی چپ و راست در هر ردیف (g ).
بااستفاده از قضیه فیثاغورث می توان طول بندها را یافت (البته شادی تعجب کنید که قضیه چنین مرد بزرگی دارای این کاربرد باشد):