دسته بندی | صنایع |
فرمت فایل | doc |
حجم فایل | 20 کیلو بایت |
تعداد صفحات فایل | 33 |
آنالیز روغن
فصل اول
روش آنالیز روغن :
یک روان کننده را می توان در حد دیگر اجزاء یک دستگاه مکانیکی مورد ارزیابی قرار داد چرا که در طی دوره کار وظایف مهمی را به عهده دارد.
با آزمایش نمونه روغن گرفته شده از ماشین اندازه گیری قابلیت روان کننده برای انجام وظایف اصلی آن ممکن گشته و همچنین اطلاعات وسیعی راجع به کار و شرایط سلامتی ماشین بدست می آید.
تکنیکهای آنالیز روغن می تواند به عنوان روشهای مفیدی برای نظارت و کنترل ماشین آلات صنعتی عمرانی حمل و نقل و نظامی مورد استفاده واقع شوند . در واقع به دلیل اینکه روغن در تماس دائم با سطوح قطعات مختلف سیستم قراردارد بنابراین با نمونه گیری می توان اطلاعات درون سیستم را به خارج از آن منتقل و در اختیار تشکیلات کنترلی و نظارتی ماشین آلات قرار دارد . در حقیقت با استمرار این نظارت می توان قبل از پیشرفت و توسعه خرابی و رسیدن به مرحله بحرانی اقدامات پیشگیرانه ای را معمول داشت .
آنالیز روغن از زمانهای گذشته به عنوان یک بخش از برنامه نت در صنایع نظامی و غیر نظامی بکار گرفته شده است و در حال حاضر نیز بنحو موفقیت آمیزی در صنایع کوچکتر گسترش یافته و عملاً بکار گرفته می شود . نقطه قوت این تکنیک قابلیت آن در شناسایی آلودگی فرسایش و عیب سیستم در مراحل اولیه است . باین ترتیب این فرصت بدست خواهد آمد تا اقدامات در زمانی جهت پیشگری و یا برنامه ریزی تعمیرات در زمان مناسب صورت پذیرد . همچنین با تجزیه و تحلیل ذرات بدست آمده از روغن نمونه ، از نظر : اندازه ، رنگ ، شکل و تراکم ، شناسایی نوع و محل عیوب میسر می گردد . امروزه روش « مراقبت وضعیت » سیستمهای مکانیکی از طریق آنالیز روغن به کمک متدها و ابزار مختلف در سطح گسترده ای در خدمت صنعت دنیا می باشد .
آنچاه مسلم است ایجاد و ره اندازی یک سیستم کنترل و نظارت برای هر مجموعه صنعتی خود نیاز به سرمایه گذاریهای مادی و انسانی داشته و طبیعتاً دستیابی به یک سیستم پیشرفته و کارا مستلزم زمان ، دانش فنی و کسب تجارب کافی نیروهای انسانی می باشد . به همین دلیل معمولاً توصیه می شود . در مرحله راه اندازی و به خدمت گیری تکنیک «مراقبت وضعیت» از روشها و تجهیزات ساده تر استفاده گردد .
امروزه روش آنالیز روغن ماشین آلات یکی از روشهای موثر «مراقبت وضعیت » است که برای کنترل قسمتهای مهم ماشین نظیر موتورها ، گیربکسها ، سیستمهای هیدرولیک و به طور کلی قسمتهائیکه در آن از روغن به عنوان روان کننده استفاده می شود بکار می رود . این روش از کارآئی بالایی برخوردار است بویژه برای ماشین آلات متحرک نظیر وسائط نقلیه سنگین جاده ای ، ماشین آلات عمرانی ، تجهیزات نظامی چون تانکها ، چرخبالها ، جنگنده ها و الخ ، به عنوان یک روش موثر شناخته شده اشت .
در واقع در روش آنالیز روغن ، از روانکار به عنوان یک منبع سرشار اطلاعات استفاده می شود . گردش روغن در داخل سیستم این امکان را بوجود می آورد تا آثار اتفاقات و یا تغییرات وضعیت سیستم به خارج از آن منتقل گردد . اطلاعات موجود در روغن با انجام آزمایشات مختلف که بر روی چند قطره از آن صورت می پذیرد قابل استخراج می باشد . با مقایسه نتایج آزمایشات هر مرحله با مراحل قبل می توان هر گونه تغییرات در وضعیت کار و سلامت دستگاه را شناسائی نمود .
اطلاعات استخراجی از نمونه
الف ) راجع به خود روغن :
مشخصات روغن مصرفی هر دستگاه بایستی دقیقاً منطبق با ویژگیهای روغن تعریف شده آن دستگاه باشد . روغن مصرفی ، توسط طراح دستگاه ، با توجه به بار وارده ، دما و دیگر شرایط کاری دستگاه تعریف می شود . هر گونه تخطی در مشخصات روغن تعریف شده منجر به خسارات تدریجی و نامحسوس و یا سریع محسوس خواهد شد .
با آزمایش نمونه روغن ، از صحت مشخصات مورد انتظار اطمینان حاصل خواهد شد بعضا روغن مورد آزمایش به دلیل مسائلی نظیر موارد ذیل فاقد شرایط لازم جهت مصرف خواهد بود :
- فعل و انفعال شیمیایی و فساد روغن
- عدم وجود مواد افزونی لازم
- عدم تطبیق ویسکوزیته
- آلودگی با آب
- آلودگی با گرد و غبار
- آلودگی با سوخت
- آلودگی با دیگر مواد
مواد افزودنی :
معمولاً روغن پایه که از نفت خام تهیه می شود فاقد ویژگیهای کافی جهت کار در دستگاهها می باشد به همین دلیل با توجه به مورد مصرف روغن ، برای حصول خواصی نظیر اسید ، ضد زنگ ، ضد اکسید ، ضد کف و غیره ، موادی به روغن پایه اضافه می گردد که نوعاً بخش قابل توجهی از قیمت تمام شده روغنهای تولیدیرا تشکیل می دهد . عدم وجود مواد افزودنی مورد نظر در روغنها عمدتاً به دلایل ذیل می باشد :
- اشتباه در انتخاب روغن (سهواً یا عدم آگاهی )
- فساد و از دست دادن خاصیت به دلیل گذشت زمان و کار زیاد روغن
- تعمد و سوء استفاده (خرید یا فروش روغن فاقد کیفیت مورد انتظار )
زیانهای عدم وجود خاصیت قلیائی در روغن :
عدد خنثی شدن یک روغن عبارت است از مقدار (بر حسب mg) باز (KOH) یا اسیدی (HCIO4, Hcl) که برای خنثی کردن مواد اسیدی یا بازی موجود در یک گرم روغن لازم است و واحد آن mgKOH است .
- گوگرد در سوختها در اثر احتراق تبدیل به CO2 و تا حدی So3 و نهایتاً اسید می شود ، لذا گوگرد از لحاظ اسیدی کردن روغنها مهم است اما در عین حال یکی از عناصر تشکیل دهنده بسیاری از مواد افزودنی نیز می باشد. چنین گوگردی که به صورت ترکیب وجود دارد ، تا میزان 5/0 % بی ضرر است .
- روغنهای روان کننده در معرض تماس با هوا ( و اکسیژن) قرار می گیرند و علیرغم عدم میل ترکیبی آنها نسبت به اکسژن ، به علت بالا بدون درجه حرارت کار انها و نیز حضور فلزاتی مثل مس و آهن که کاتالیزور هستند و گوگرد و … واکنش اکسید اسیون روغنها اتفاق می افتد و این مواد اکسیده می شوند و هر روغنی که بیشتر پالایش شده باشد دیرتر اکسید می شود . با این وجود بهترین روغنها نیز در مقابل حراتهای بالا قرار به تحمل نیستند ، لذا اکسیده شدن روغنها منجر به ایجاد دو نوع مواد ناخواسته ذیل می گردد :
1- مواد غیر محلول در روغن که عبارتند از رزین ها ، لعاب و یا لجن
2- مواد محلول در روغن که عمدتاً که عمدتا اسیدهای آلی و پر اکسیدها هستند. نکته مهم اینکه خود این محصولات اکسیداسیون ، بویژه پرپر اکسیدها ، کاتالیز.ر واکنش اکسیداسیون هستند و سرعت اکسیده شدن روغن را افزایش می دهند .
- اکسیداسیون بویژه پراکسیدها کاتالیزور واکنش اکسیداسیون هستند و سرعت اکسیده شدن روغن را افزایش میدهند .
- اکسیداسیون روغنها باعث افزایش ویسکوزیته روغنها می شود .
- رسوبات حاصل از اکسید اسیون ممکن است باعث چسبیدن قطعات به یکدیگر شوند .
- رسوبات حاصل از اکسید اسیون باعث سائیده شدن آنها و نیز سبب مسدود شدن سوراخهای فیلترها و راههای باریک عبور روغن می شوند .
به طور خلاصه ، ایجاد اسید و عدم وجود قلیا جهت خنثی نمودن آن ، لجن ،کف کردن زیاد ، جدا نشدن روغن از آبی که احتمالاً با آن مخلوط می شود ، خوردگی ،و ویسکوزیته شدن (عدم جاری شدن روغن) جزء صدمات اکسیداسیون روغن به شمار می روند .
گرانروی (ویسکوزیته ) و زیانهای ناشی از عدم وجود گرانروی مناسب :
ویسکوزیته اولین و مهمترین ویژگی مورد انتظار روغنهای مصرفی می باشد . هر گونه انحراف از میزان ویسکوزیته تعریف شده قطعاً منجر به خسارات سنگین دستگاه خواهد شد . لذا پیوسته از صحت ویسکوزیته روغنهای مصرفی ماشین آلات بایستی اطمینان حاصل نمود . به این منظور هم روغن نو و هم مصرف شده جهت ادامه استفاده مورد آزمایش غلظت قرار می گیرند .
گرانروی (ویسکوزیته ) شاید مهمترین خاصیت فیزیکی روغنهای روان کننده معدنی باشد . زیرا تشکیل لایهای از روغن برای کاهش سائیدگی و اصطکاک ، عمدتاً به ویسکوزیته آن بستگی دارد . در اثر کاهش دما ، ویسکوزیته کم می شود و بالعکس و درفشارای بالا و زیاد نیز ویسکوزیته زیاد می شود .
- ویسکوزیته باید به اندازه کافی باشد و نه بیش از آن تادستگاه در سرعتهای زیاد از لحاظ رسیدن و روغن به لابلای همه قطعات ، دچار کمبود نشود و از طرفی آنقدر بالا باشد که هنگام کار دستگاه سائیدگی یاتاقان و یا سایر قطعات را حاصل نشود .
به طور خلاصه دقت انجام وظایفی از روغنهای مثل : روغنکاری (کاهش اصطکاک و سائیدگی) انتقال حرارت و خنک کردن ، انتقال نیرو و ضربه گیری (در مقابل بار ) به مناسب بودن ویسکوزیته آن بستگی دارد .
آلودگی :
بر اساس تحقیقات به عمل آمده آلودگی روغنهای مصرفی ، حتی روغنهای نو ، یکی از عوامل عمده استهلاک سیستمهای هیدرولیک ، موتورها و دیگر تجهیزات می باشد . در یک مقایسه ، میزان آلودگی تعداد زیادی از ماشین آلات فعال در ایران چندین برابر بیش از آلودگی ماشین آلات در یکی از کشورهای صنعتی تحت پوشش برنامه «مراقبت وضعیت» بودند گزارش شده است . منابع عمده آلودگی معمولاً ناشی از محیط کاردستگاه سیستم فیلتر ضعیف ، آب بندی ضعیف و غیره می باشد . از طریق آنالیز دوره ای روغن می توان پیوسته وجود این عوامل مخرب را کنترل نمود.
شاید بتوان قدرت و توانایی روشهای آنالیز روغن در تشخیص میزان و نوع آلودگی سیستمهای مکانیکی نظیر : موتورها ، سیستمهای هیدرولیک و غیره را به عنوان یکی از جنبه های برجسته این روشها ذکر نمود . رابطه فیمابین میزان آلودگی و قابلیت اطمینان سیستم توسط کمیته ای در صنایع یکی از کوشرهای صنعتی بررسی گردید ، نتیجه تحقیق نشان داد که 55% مسائل گزارش شده ناشی از وجود گرد و خاک می باشد . البته این نتایج بهبود قابل ملاحظه ای را در مقایسه با ارزیابی که ده سال قبل از آن انجام شده بود نشان می دهد این بهبود نتیجه مستقیم استفاده از ابزار موثرتر در کار فیلتر هوا در روغن بوده است .
زیانهای ناشی از وجود آب :
روغنها نباید آب داشته باشند ، زیرا آب اثرات نامطلوبی روی کارآئی روغنهای گوناگون دارد . ولی به هر حال آ‘ ، از طریق گوناگون (مثل احتراق سوخت در موتورها و یا نشت آب در توربینها ) وارد روغن می شود که باید به طریقی (مثل تبیخر و…) از آن جدا شود .اندازه گیری مقدار آب از لحاظ اثری که روی خواص بازدارندگی ، خوردگی و اکسید اسیون روغن دارد ، ضروری است . وجود آب می تواند روی عمر روغن ، اثری 3 تا 10 برابر داشته باشد و در بعضی از یاتاقانها خوردگی شدید بوجود آورد . بعضی روغنها مثل روغن توربین و روغنهای تجهیزات پنوماتیک ، طوری ساخته می شوند که نسبت به آب ، مقاومت بیشتری داشته باشند . در حالیکه اکثر روغنها تنها نسبت به مقادیر بسیار کم و رطوبت مقاوم هستند ولی مقدار زیاد آب باید در مدت زمان معینی از آنها جدا شود . در روغنهای توربیین بخاری تا 2/0 در صد آب قابل تحمل است (به شرطی که خوردگی ایجاد نکند ).
روغنهای هیدرولیک و روغن موتورها نیز نسبت به رطوبت حساس هستند . آب در روغن موتوراگر تبخیر شود یا ماده پاک کننده روغن تولید امولسیون (کف سفید رنگ در موتور ) می نماید که ممکن سوراخهای فیلتر روغن را مسدود کند ، ضمن اینکه باعث زنگ زدن و خوردگی نیزمی شود . در روغنهای هیدرولیک نیز وجود آب باعث خوردگی می شود و حد تحمل این نوع روغنها ، عموماً زیر 1/0 در صد است .
ب ) راجع به ماشین :
در همه سیستمهای مکانیکی فرسایش نتیجه اصطکاک و ذرات فرسایشی محصول می باشد . ذرات فرسایشی پیوسته از قطعات جدا و در روغن شناور می شوند . از طریق آنالیز ذرات معلق در روغن فرایند پیچیده فرسایش را می توان در هر مرحله از پیشرفت آن کنترل نمود . با استفاده از مشخصات ذرات فرسایشی معلق در نمونه روغن می توان به ذرات : نوع ، شدت ، محل و عامل عیب پی برد به طور مثال : با اندازه گیری مقدار ذرات فرسایشیس در نمونه روغن می توان رفتار ماشین را زیرنظر داشت و از زیر نظر داشت و از چگونگی مرحله آیندی ، دوره عمر طبیعی ، مرحله اولیه ایجاد عیب ، مرحله بحرانی عیب و نهایتاً توقف آن آگاهی یافت .
در آزمایشگاه «مراقبت وضعیت » به کمک آزمایش آنالیز طیف نشر اتمی مقدار ذرات بسیار ریز فرسایشی (کوچکتر از 4 میکرون) انواع فلزات (بیست عنصر نظیر : آهن ، مس ، آلومینیوم ، سرب ،کروم و الخ ) که در متالوژی ساخت قطعات داخلی سیستمهای بکار رفته ظرف کمتر از یک دقیقه در مقیاس ppm بدست خواهد آمد . افزایش تولید مقدار این ذرات نشاندهنده شدت فرسایش خواهد بود و با توجه به جنس ذرات می توان تا حد بسیار بالائی محل و قطعه معیوب را شناسائی نمود . همچنین به کمک سایر آزمایشات اطلاعات وسیعتری راجع به ذرات قابل استحصال خواهد بود .
نتیاج بررسیهای به عمل آمده نشان داده که از طریق «مراقبت وضعیت » می توان 90% موراد بروز عیب را در مرحله اولیه خرابی شناسایی نمود . به منظور استخراج اطلاعات لازم راجع به ذرات فرسایشی ، آزمایشهای مختلفی روی نمونه روغن انجام می شود . این آزمایشها بستگی به اعلام نیاز مهندسین مراقبت وضعیت و یا کارشناس آزمایشگاه دارد .
دسته بندی | صنایع |
فرمت فایل | doc |
حجم فایل | 23 کیلو بایت |
تعداد صفحات فایل | 21 |
عنوان :
مطالعه ریزساختار آلیاژهای نانوکریستال Al-Ti ترکیب شده بوسیله ball mill در اتمسفر هیدروژن و اکستروژن گرم آن
مقدمه :
آلیاژهای آلومینیوم جزء مواد پرکاربرد درصنایع هوافضا و اتومبیل می باشند . زیرا این آلیاژها دارای خواص خوبی مانند مقاومت به خوردگی ، شکل پذیری و خواص مکانیکی خوب هستند ولی آلیاژهای آلومینیوم تجاری در دمای بالاتراز 200-300ºC بطورمحسوسی استحکامشان را از دست می دهند و درکاربردهای ساختمانی ناپایدار و غیرقابل استفاده می شوند که این دما به ترکیب و ساختار آلیاژ بستگی دارد . تحقیقات گسترده در مورد کاربردهای آلیاژهای آلومینیوم بواسطه استحکام دهی بالای آنها در دمای 600ºC توسعه پیدا کرده است .[27]
آلیاژسازی مکانیکی (Mechanical Allay) MA آلیاژهای Al-Ti انتخاب خوبی برای اکثر کاربردها هستند زیرا بعلت وجود ذرات ریز Al-Ti و اکسیدها و بیدها مقاومت خوبی را در دماهای بالاتر از 600ºC نشان می دهد . استحکام در دمای بالا همراه با چگالی کم ، آلیاژهای Al-Ti را قابل رقابت با موادی مانند تیتانیم و آلیاژهای پایه نیکل می کند . ولی انعطاف پذیری کم در دمای اتاق باعث شده استفاده عمومی از آنها محدود شود [28,29] ساختار نانوکریستال می تواند تنها دلیل افزایش همزمان سختی و انعطاف پذیری (ductility) باشد .
برای افزایش انعطاف پذیری (duetility) به خوبی استحکام در دمای اتاق برای آلیاژ Al-Ti ما می توانیم ار روش آلیاژسازی مکانیکی برای تهیه ساختار نانوکریستال استفاده کنیم زیرا در این روش اندازه ذرات پودر درحد نانومتر کاهش می یابد .
مواد نانوکریستال بعنوان یکی از پربهره ترین مواد در دهه اخیر مطرح شده اند به سبب اینکه آنها خواص مفید و بالقوه ای برای کاربردهای مختلف دارند که وابسته به اندازه بی نهایت ریزدانه ها است [30,32] و مواد بصورت پودر زمانی می توانند یک ماده با ساختار نانوکریستال با سودهی مناسب را تولید کنند . که سایز ذرات آنها در حد نانومتر باشد [33] .
در آزمایشات گذشته [34] پودر نانوکریستال آلیاژ Al-Ti بطور موفقیت آمیزی بوسیله آسیاب گلوله ای واکنش دار(RBM) (Reactive ball Milling) در اتمسفر هیدروژن ترکیب شده بود و یک نوع ساختار نانومتری که شامل Al با اندازه ای درحد نانومتر و همچنین ذرات نانومتری TiH2 را به بوجود آورده بود . در ابتدا آسیاب کردن ، TiH2 تشکیل شده و زمان تشکیل ساختار را 1 تا 3 ساعت کمتر کرده است [35].
1- جزئیات آزمایشات
1-1 آسیاب گلوله ای واکنشی و مشخصات پودر آسیاب شده .
پودر آلومینیوم خالص (99.5% , - 325mesh خلوص) و تیتانیم (99.9% , - 325mesh خلوص) با ترکیب شیمیایی Al-5% at Ti باهم ترکیب می شوند . RBM یک آسیاب گلوله ای بزرگ با انرژی زیاد است و دارای ظرفیت 7.81 تحت اتمسفر هیدروژن می باشد شرایط آسیاب کردن بوسیله اثری که بر روی ساختار نانوکریستال آلیاژ Al-Ti دارد تعیین می شود [8] زمان آسیاب کردن و سرعت آسیاب کردن بترتیب 30 ساعت و 250 rpm می باشد وزن نهایی پودر 200gr و نسبت گلوله های آسیاب به پودر 65:1.2wt%? می باشد عامل کنترل کننده فرآیند استریک اسید (CH3 (CH2)16 COOH) می باشد که اضافه می شود . قبل از شارژ کردن محفظه آسیاب با گاز هیدروژن ، محفظه باید بوسیله Rotary Pump خلاء بشود ( درحدود 10-3 torr ) . [36]
پودرهای آسیاب شده بعد از طی مرحله آسیاب به 200 mesh می رسند بعد از طی این مراحل آزمایشاتی بوسیله TEM , SEM , XRD بر روی پودر انجام شد و مشاهده شد اندازه دانه ها که بوسیله TEM اندازه گیری شده بود با داده های تئوری از XRD مطابقت داشت . دمای تجزیه TiH2 و تشکیل Al3 Ti بوسیله نمودار DSC در نرخ حرارت دهی 10-3k/s و درحضور اتمسفر آرگون محاسبه شدند . بعد از عملیات حرارتی تغییرات ریزساختار و اندازه دانه با نتایج بدست آمده از TEM , XRD اختلاف داشت . [26]
(Con soli dation Temp) دمای ترکیب شدن : به دمای گفته می شود که در آن دما همه TiH2 تجزیه شده و Al3Ti تشکیل می شود . [26]
2-1 اکستروژن گرم
پودرآسیاب شده را در الک -200 mesh الک کرده و با اکستروژن گرم پودر را مستحکم می کنند برای اکستروژن پودر از یک محفظه فلزی بنام can همانطور که گفته شده استفاده شده بود . برای مستحکم کردن پودر از پرس سرد با فشاری حدود 98MPa درقوطی از جنس AL6063 و یا از جنس Cu می توان استفاده کرد . این نمونه به عملیات حرارتی قبل از اکستروژن گرم نیاز دارد . قوطی آلومینیومی در دمای 450ºC یا 500ºC به یک میله تبدیل می شود . البته بعداز عملیات حرارتی درهمان دما و در حدود 1 تا 2 ساعت * سرقوطی را می توان بوسیله جوش قوس آرگون ببندیم و آن را در دمای 500ºC و بوسیله پمپ rotary بمدت 1 تا 3 ساعت مستحکم کنیم . نسبت اکستروژن 25:1 است و فشار اکستروژن 1.5GPa ، قطر قطعه اکسترود شده 15nm است . [26]
3-2 تستهای مکانیکی
سختی و ریزسختی وتست کشش بر روی قطعه اکسترود شده انجام شد . سختی بوسیله دستگاه سختی سنج راکول (RockwellB) اندازه گیری شد . اندازه گیری Vickers Micro Hardness با نیروی 500gr و دستگاه Leitz انجام شد . نمونه برای تست کشش از روی ا ستاندارد ASTM- E8M تهیه شده و طول gage آن 20mm بود با قطر سطح قطعه 4mm که دردستگاه2000LBS SATECDLF20 تست شده . تست کش با نرخ کرنش 4.2 x10-4s-1 در دمای اتاق و دماهای بالاتر(500ºC , 400ºC , 300ºC) انجام شد . نتایج تست کشش این قطعه با آلیاژ Al-Ti که بوسیله آلیاژسازی مکانیکی و در اتمسفر آرگون تهیه شده بود و سپس اکستروژن گرم شده بود مقایسه می شود .
چگالی بوسیله قانون ارشمیدس اندازه گیری شد . ریزساختار قطعه اکسترود شده و نمونه ای که تست کشش بروی آن انجام شده بود بوسیله TEM بررسی شد .
سطح شکست نمونه ای که تست کشش بررسی انجام شده بود بوسیله SEM بررسی شد .
الکترولیت مورد استفاده برای پوشش قطعاتی که برای آنالیز TEM مورداستفاده قرارگرفت شامل 10درصد حجمی اسیدپرکلریک Perchloric acid و 90درصد حجمی اتیل الکل (ethyl alcohol) است که در دمای –25ºC استفاده شد همچنین ولتاژ مورد استفاده هم است . [26]
2- نتایج
آنالیز XRD نشان می دهد که همه تیتانیوم ها (Ti) بعداز RBM در اتمسفر هیدروژن تبدیل به TiH2 شده اند شکل 11 عکسهای TEMپودر Al-5 at %Ti که برای 30h دراتمسفر هیدروژن آسیاب شده است را نشان می دهد مدل سطح انتخاب شده تفرق (Selected area diffraction) (SAD) نشان می دهد که این سطح شامل TiH2 , Al است که بصورت زنجیره ای (Ring) و تصادفی در کنارهم قرار گرفته اند و ساختار ریزی از دانه های پلی کریستال را تشکیل می دهند اندازه دانه هایی که بطور مستقیم در عکسهای TEM مشاهده شده کمتر از 20nm است . آنالیز TEM نشان می دهد که TiH2 , Al اندازه هایی نزدیک بهم دارند و دارای پراکندگی غیریکنواخت هستند . نتایج TEM نشان می دهد که ریزساختار پودر آسیاب شده بصورت ترکیبی درحد نانومتر است [36] که شامل وزارت TiH2 , Al با اندازه ای در حد نانومتر است شکل 12 یک نمودار DSC مربوط به پودرآسیاب شده است .
4 واکنش دراین نمودار مشخص است که واکنشهای (A , C, D) گرمازا (exothermic) و واکنشی دیگر گرماگیر (endothermic) است که رنج گسترده دمایی آن ازنقطه B شروع می شود .
برای امتحان مبدأ هر پیک (peak) نمونه پودر را مطابق دمای هر پیک در نمودار DSC گرم کرده و بعد سرد می کنیم و سپس بوسیله XRD بررسی می کنیم . اولین پیک گرمازا در 330ºC (نقطه A) تثبیت ساختار غیرپایدار حرارتی را بعنوان grain bounday readering,grain boundary relaxation نتیجه می دهد . پهنای وسیع واکنشهای گرماگیر در حدود دمای 370º c (نقطه B) شروع می شود این نتیجه تأثیر واکنشهای گرماگیر از تجزیه TiH2 است و رنج پیوسته و وسیع از یک واکنش آرام را نشان می دهد . پیک دوم در دمای 390cº (نقطه C) اتفاق می افتد که گرمازا است این پیک خیلی کوچک بروی پیک وسیع واکنش گرماگیر قرار می گیرد و با آن هم پوشانی دارد این پیک نتیجه آلیاژسازی دوباره بین شبکه Ti , Al است که از تجزیه شدن TiH2 بدست آمده است . واکنش آخر بعد از تجزیه TiH2 در دمای 480º C (نقطه D ) بطور مشخص درنهایت انجام می شد .
آنالیز حرارتی در این آزمایش شبیه به آزمایش قبلی [8] که بروی پودری با ترکیب Al-10 wt/Ti که بمدت 50 ساعت در اتمسفر RBM,H2 شده بود است بنابراین دمای واکنش برای این آزمایش 40-50ºC کمتر از آزمایش قبلی است. و ریزساختار پودر آسیاب شده در این آزمایش ریزتر از آزمایش قبلی بود . در این مورد آنالیز حرارتی پودری با ترکیب Al-10wt% Ti که در اتمسفر آرگون آلیاژسازی مکانیکی شده است نشان می دهد که AL3Ti بین دمای 260-320ºC تشکیل شده است [37] اما این یک آزمایش است زیرا Al3Ti قبل از آنکه TiH2 تجزیه شود تشکیل نشده بود . تشکیل Al3Ti با تأخیر تا دمای 480ºC انجام می شود که بعنوان دمای معمولی ترکیب برای آلیاژسازی مکانیکی آلیاژهای پودر Al-Ti مطرح است . تأخیر در تشکیل Al3Ti می تواند از رشد دانه های Al3Ti در حین عملیات حرارتی و گاززدائی قبل از اکستروژن گرم بواسطه زمان کم حرارت دهی جلوگیری کند . شکل 13 عسکهای TEM مربوط به پودری با ترکیب Al-5 at%Ti که در RBM بمدت 30 ساعت آسیاب شده و سپس بمدت 20دقیقه در دمای 500ºC عملیات حرارتی شده است را نشان می دهد . سطح عکس نشان دهنده مدل SAD فازهای Al-Ti ,Al و Al2O3 را بدون TiH2 را نشان می دهد اندازه دانه ها نیز در حدود 20nm نگه داشته می شود . برطبق آنالیز DSC دمای مناسب برای ترکیب 500ºC است . [26] برای آزمایش ، 4 قطعه برای شرایط متفاوت اکستروژن آماده شده بود . شرایط اکستروژن گرم و مشخصات قطعات اکسترود شده در جدول 2 بیان شده است . فشردگی نسبی همه قطعات99% و بیشتر است . شکل 1+4 عکسهای TEM مربوط به ریزساختار قطعه اکسترود شده را نشان می دهد . قطعه اکسترود شده عمدتا شامل ذرات Al3,Ti,Al که تقریبا سایزی حدود 50nm تا 100nm دارند که وابسته به شرایط اکستروژن است و تصویر TEM آنها در شکلهای 4(c),4(a) نشان داده شده است . ریزساختار قطعه اکسترود شده ترکیبی از Al3Ti,Al که بصورت پودر است اندازه دانه هم در فرآیند گاز زدائی و هم در فرآیند عملیات حرارتی قبل از اکستروژن با کم کردن دما و کوتاه کردن زمان فرآیند افزایش می یابد. [26] اندازه دانه نمونه 4 کمتر از 50nm می باشد این یکی از ریزترین اندازه دانه ها در آلیاژهای Al-Ti است اندازه دانه نمونه های آسیاب شده در RBM تحت H2 که اکستروژن گرم شده اند نسبت به قطعاتی که به روشی آلیاژسازی مکانیکی تحت Ar تهیه شده و سپس اکستروژن گرم شده (که اندازه ای حدود 150-40nm دارند شکل 4(d)) خیلی ریزترند .
Al4c3 , Al2o3 بوسیله واکنشهای بین C , O , AL در فرآیندی که عامل کنترل کننده واکنش نیز حضور دارد ایجاد می شود که بصورت ذرات پراکنده وجود دارند . اکسیدهایی که درشکل 4(e) مشخص است به شکل دایره ای با قطر 10nm هستند که در داخل دانه ها مشاهده می شود . کاربیدها همانطور که درشکل 4(f) مشاهده می شود به صورت استوانه ای هستند که معمولا در مرز دانه ها قرار می گیرد .با اینکه Al4c3 , AL2O3 بطور یکنواخت در درون شبکه پراکنده نمی باشند ولی آنها می توانند استحکام اولیه بیشتری در مقایسه با Al3Ti ایجاد کنند زیرا آنها خیلی ریزترند . نتایج تست سختی و ریزسختی (micro hardness) در جدول 2 بیان شده است هم سختی و هم ریزسختی با کاهش اندازه دانه افزایش می یابد . [26] درمورد قطعه شماره 4 اندازه دانه کمتر از 50nm است که بطور فوق العاده ای در مقایسه با دیگر نمونه ها تفاوت دارد این قطعه در قوطی Cu (can) ساخته شده که تأثیر این نوع قوطی (can) درخواص قطعات اکسترود شده بطور واضح مشخص نیست . به همین خاطر جزئیات قطعه شماره 4 در ادامه نیامده است در آزمایشات [38] نشان داده شده بود که ریزسختی (micro hardness) آلیاژ Al-8at% Ti که به روش آلیاژسازی مکانیکی تحت اتمسفر Ar تولید شده و سپس اکسترود شده 160Hv بوده است و همچنین آلیاژی با ترکیب Al-5at% Ti که پودر آن در RBM آسیاب شده و سپس اکسترود شده است 197.5-231.7Hv می باشد و بنابراین حدود 23-45% بالاتر از قطعه ای است که بروش آلیاژسازی مکانیکی (MA) تهیه شده است و این بدین خاطراست که ریزساختار Al همانند AL3Ti درقطعه آسیاب شده در RBM و اکسترود شده نیز درحد نانومتر است .
دسته بندی | صنایع |
فرمت فایل | doc |
حجم فایل | 17 کیلو بایت |
تعداد صفحات فایل | 28 |
چدن ریختگی
مقدمه :
عنوان چدن ریختگی مشخص کننده دسته بزرگی از فلزات است . فلزاتی که در این دسته قرار دارند از نظر خواص با یکدیگر تفاوتهای فاحش دارند . عنوان چدن ریختگی ، همانند عنوان فولاد که مشخص کننده دسته دیگری از فلزات است ، یک عبارت کلی است . فولادها و چدنها در اصل آلیاژ آهن هستند که با کربن ساخته شده اند اما فولاد همواره کمتر از دو درصد کربن داشته و معمولاً درصد کربن آنها از یک درصد بیشتر نمی شود . درحالیکه چدنها بیش از دو درصد کربن دارند. چدنها ی ریختگی گذشته از کربن باید دارای مقادیر قابل توجهی از سیلیسیم باشند که عموماً میزان آن از یک تا سه درصد متغیر است .
تفاوتهای مذکور اختیاری و دلخواه نیست اما همین امر ریشه متالورژیکی و عامل موثری است که سبب میشود خواص مفید و متفاوتی در این دو دسته از گروه فلزات آهنی پدید آید .
امید است این پروژه سهمی در پیشبرد صنعت وتکنولوژی ریخته گری چدن در ایران داشته باشد و مورد استفاده دیگر دانشجویان نیز قرار گیرد .
تقسیم بندی انواع چدنها :
چدن سـفید :
در چدنهای سفید کربن به شکل کاربید آهن یا سمانتیت ظاهر می شود . کاربید آهن ترکیب شیمیایی کربن موجود در مذاب همراه با آهن می باشد بصورت مجموعه ای از اجزاء سخت و شکننده می باشند که به آنها سمانتیت نیز گفته میشود ، کاربید آهن یا سمانتیت تعیین کننده خواص نهایی ریز ساختار می باشد . به همین دلیل چدن سفید اساساً آلیاژی سخت و شکننده است . سطح مقطع شکست این چدن به رنگ سفید بوده و استحکام فشاری زیادی خواهد داشت .
از خواص دیگر این آلیاژها مقاومت عالی در برابر سایش و نیز سختی زیاد را می توان نام برد . در این چدنها سرعت سرد شدن مذاب بسیار زیاد است که برای این منظور معمولاً ریخته گری این نوع چدن در قالب مبرد دار انجام می شود . مبرد مورد استفاده در انجماد این آلیاژها معمولاً از جنس گرافیت یا آهن می باشد در قسمتهای نازک و یا گوشه های تیز از یک قطعه با این جنس یا پره های نازکی که از این جنس استفاده می شود . معمولاًو به طور حتم چدن سفیدتشکیل خواهد شد .
چدن چکشخوار ( مالیبل Malleable ) :
در این چدنها کربن بشکل گرافیت در نقاط مختلف تجمع نموده و شکلهای نا منظمی شبیه به کلوخه را ایجاد می کنند این چدن از نظر ترکیب شیمیایی شبیه به چدن سفید بوده و قطعات چدن چکش خوار را در ابتدا می توان از چدن سفید تهیه نمود بدین صورت که ابتد ا چدن سفید ریخته گری شده و سپس با انجام یک عملیات حرارتی کربن را به صورت گرافیت کروی در زمینه راسب ( رسوب ) می کنند . ضخامت قطعه های چدن چکش خوار معمولاً محدود و ضخامت کمی دارند مزیت این چدنها قابلیت چکش خواری ، نرمی و قابلیت تراشکاری مناسب می باشد .
چدن خاکستری :
در این چدنها ، کربن به شکل گرافیت می باشد ، این چدنها در صنعت بیشترین کاربرد را به خود اختصاص می دهند و به آنها چدن ریختگی می گویند که البته برای این نوع چدن عنوان نا مناسبی می باشد سطح مقطع چدن خاکستری به رنگ خاکستری بوده که این رنگ ناشی ازرسوب ( ورقه های ) نازک گرافیتی در آن می باشد .
از نظر خواص مکانیکی ، سختی بالایی دارند و مقاومت فشاری زیاد و نیز قابلیت تراشکاری خوبی از خود نشان می دهند . از خواص دیگر این چدنها قابلیت جذب ارتعاش می باشد . ورقه های گرافیت در این چدنها می توانند به شکلها و فرمهای مختلفی ظاهر شوند . هر یک از انواع گرافیت تمایل به افزایش خواص معینی از این چدنها دارند .
چدن نشکن ـ داکتیل ( چدن با گرافیت کروی ) :
کربن دراین چدنها به صورت گرافیت کروی شکل ظاهر میشود . ترکیب شیمیایی این چدنها شبیه ترکیب شیمیایی چدن خاکستری میباشد ، فقط وجود مقدار عنصر گوگرد در این چدنها بسیار حساسیت دارد .
افزودن مقدار کمی از عنصر منیزیم( Mg ) به چدن مذاب باعث کروی شدن گرافیت و تولید چدن نشکن خواهد شد . بالا بودن مقدار کربن و سیلیسیم باعث افزایش محفوظ ماندن مزایای فرآیند ریخته گری و قابلیت ماشینکاری در این چدنها میشود .
مدول الاستیک چدن نشکن زیاد است و استحکام تسلیم آن در محدوده خوبی قرار دارد ، از طرفی انعطاف پذیری این آلیاژها بسیار خوب است .
وجود گوگرد د ر این چدنها باعث اتلاف منیزیم به شکل سولفورید منیزیم Mgs می شود بنابراین مقدار گوگرد در این آلیاژها نباید از 03/0% بیشتر باشد .
ضخامت مقطع تاثیر بسیار محدودی برخواص آن دارد . ضخامت این چدن بطور کلی اثری بر میزان سختی آن نخواهد داشت .
انواع مختلف چدنهای داکتیل یا نشکن باخواص مکانیکی متفاوت و ریز ساختارهای مختلف وجود دارند . از نظر ترکیب شیمیایی معمولاً تفاوتی بین انواع مختلف این چدن وجود ندارد ، مگر اینکه جهت کاربردهای از پیش تعیین شده وطراحی های از قبل صورت گرفته عمداً اختلاف در ترکیب شیمیایی ایجاد گردد ، این تغییرات ترکیب شیمیایی به منظور بهبود ساختمان میکروسکوپی قطعه صورت می گیرد .
5) چدن با گرافیت فشرده :
در این چدنها گرافیت به شکل ورقه های ضخیم و کرمی شکل خواهد بود که هر یک از این ورقه ها با یک دانه موجود در زمینه فلز ارتباط دارد این چدنها از نظر خواص در بین خواص چدن خاکستری و خواص چدن نشکن قرار دارند . شکل گرافیت فشرده تحت عناوین :
1 ) شبه ورقه ای 2) ورقه متراکم 3) نیمه کروی 4) گرافیت کرمی شکل
قرار دارد .
روش تولید این چدنها شبیه روش تولید چدن نشکن می باشد ولی برای تهیه آن از عناصر آلیاژی دیگر مانند تیتانیم استفاده می شود تا تشکیل گرافیت کروی به حداقل خود برسد . چدن با گرافیت فشرده
قابلیت ریخته گری ، چدنهای خاکستری را به اندازه ای دارا می باشد .
ولی استحکام کششی آن بیشتر بوده وقابلیت انعطاف پذیری بهتری دارد.
چدن پر آلیاژ ( چدن آلیاژی ) :
این گروه از چدنها شامل چدن سفید پر آلیاژ و چدن خاکستری پر آلیاژ و چدن نشکن پر آلیاژ می باشد ، خصوصیات آنها در مقایسه با خصوصیات همان نوع چدن بدون ترکیب آلیاژی به شکل متفاوت می باشد این چدنها در مواردی که خصوصیات و مشخصات مورد نیاز غیر معمولی باشد مانند نیاز به :
1) مقاومت به سایش بسیار زیاد .
2) مقاومت آلیاژ در دماهای بالا .
3) مقاومت در برابر خوردگی .
4) داشتن خواص فیزیکی فوق العاده ( مانند انبساط حرارتی زیاد ، خاصیت جاذبه مغناطیسی و ... )
مورد استفاده قرار می گیرد .
مشخصات عمومی آلومینیوم و آلیاژهای آن :
مشخصات فیزیکی :
آلومینیوم یکی از عناصر گروه سدیم در جدول تناوبی است که با تعداد پروتون 13 و نوترون 14 می باشد ، که در نتیجه می توان علاوه بر ظرفیت 3 ، ظرفیت 1 را نیز در بعضی شرایط برای آلومینیوم در نظر گرفت .
آلومینیوم از یک نوع ایزوتوپ تشکیل شده است و جرم اتمی آن
دراندازه گیری های فیزیکی 9901/26 و در اندازه گیری های شیمیایی 98/26 تعیین گردیده است.شعاع اتمی این عنصر در 25 درجه سانتیگراد
برابر 42885/1 آنگستروم و شعاع یونی آن از طریق روش گلد اسمیت برا بر57/0 آنگستروم بدست آمده است که در ساختمان F.c.c و بدون
هیچگونه تغییر شکل آلوتروپیکی متبلور می شود .
مهمترین آلیاژهای صنعتی و تجارتی آلومینیوم عبارت از آلیاژهای
این عنصر و عناصر دوره تناوبی سدیم مانند منیزیم ، سیلیسیم و عناصر دوره وابسته تناوب مانند مس و آلیاژهای توام این دو گروه است .
( Al-cu )، ( Al- si mg ) ، ( Al-cumg) ، (Al-cumgsi)
سیلیسیم و منیزیم با اعداد اتمی 14 و 12
دسته بندی | صنایع |
فرمت فایل | doc |
حجم فایل | 15 کیلو بایت |
تعداد صفحات فایل | 32 |
بیان مساله
فلز آلومینیوم بادارا بودن مزایای متنوع جایگاه ویژهای برای خود در صنایع پیشرفته روز ایجاد کرده است. ساختار آلیاژی مقاوم آلومینیوم اعتماد و اطمینان در استفاده ازآن را در صنایع هواپیما سازی دوچندان نموده است. قوانین سخت کاهش آلایندگی خودروها و نیاز به مصرف پایین سوخت آنها، خودروسازان را ناگزیر به استفاده از این فلز گرانبها در محصولات خود کرده است. صنایع حمل و نقل ریلی، الکتریکی، تجهیزات مخابراتی احداث ساختان، ظروف غذا و غیره همگی به نوعی سعی در بهرهمند شدن از مزایای فلزآلومینیوم دارند. از این رو استراتژی جهانی در ظرفیتهای تولید متناسب با نیزا بازار مصرف بوده است.
بانگرش به تحولات جهانی مانند افزایش جعیت، آلودگی فزاینده محیط زیست، ناخوشایند به نظر رسیدن وشع اقتصادی جهان و تأثیر و تاثربازهم بیشتر کشورها، آنچه در مورد اکثر صنایع مطلوب به نظر میرسد، پرهیزاز آلودگی محیط زیست، پایین بودن قیمت مصرف، پاسخگویی به سلیقه پیچیده و قابلیت دسترسی سریع است، اهمیت این فلز با توجه به موارد فوقالذکر درجهان امروز بیشتر مشخص میشود.
سه شرکت عمده تولید کننده آلومینیوم در جهان که تقریبا یک سوم تولید جهان را در اختیار دارند به نامهای Alcoa، Alcan، Rusky میباشد.
Alcoa با تولید 3600 هزارتن در سال 7/14% از تولید را در اختیار دارد. Rusky با توجه جهان را در اختیار دارد، در حال حاضر این سه گروه تولیدی جهان براساس منابع و سودآوری میزان تولی خود را کنترل میکنند.
در حوزه خلیجفارس دو کشور امارات متحهده عربی و بحرین با مجموع تولید یک میلیون و 50هزارتون تقریباً 5% کل تولید جهان را به خود اختصاص دادهاند. موفقیت گذشته شرکتهای Alba بحرین و Dubal امارات متحده عربی و طرحهای توسعهای این صنعت در کشورهای مذکور، کشورهای دیگر این منطقه را تشویق به سرمایهگذاری در این میدان صنعتی کرده است.
امارات متحده عربی درحالی حاضر 33/2% تولید جهانی را در اختیار دارد و درحال بررسی افزایش سهم خود به میزان دوبرابر مقدار فعلی یعنی رساندن ظرفیت تولیدی به 936 هزارتن در سال میباشد. همینطور آلومینیوم بحرین که سهم آن از تولید جهان در حال حاضر 18/2% میباشد، افزایش ظرفیت خود از 500 هزارتن فعلی به 750 هزارتن در سال 2004 و یک میلیون تن در سال 2008 میلادی را دربرنامه دارد.
تمام موارد فوق اهمیت روزافزون جهانی در دستیابی و توسعه استراتژیک این فلز گرانبها را نشان میدهد. کشور ایران بادارا بودن معادن بوکسیتی آلومینا، منابع گازی فراوان به منظور تولید برق ارزان قیمت و نیروی کار نسبتا ارزان، تولید رقابتی فلز آلومینویم را داراست. اهمیت این فلز در ایجاد اشتغال مستقیم و توسعه صنایع زیردستی مرتبط برای کشوری با نیروی جوان جویای کار و تحصیل کرده امری اجتناب ناپذیر است.
مزیتهای نسبی ایران در توسعه صنعت آلومینیوم را میتوان در عناوین زیر خلاصه نمود:
1- انرژی ارزان و قابل دسترس
2- نیروی کار ماهر، ارزان و قابل دسترسی
3- وجود بازار مصرف داخلی
4- ظرفیت خالی صنایع پایین دستی
5- هماهنگی با تقسیمکار جهانی بازار
در این صنعت در ایران تنها دو تولید کننده به نامهای ایرالکو و المهدی فعالیت میکنند که سهم هر کدام ازآنها در تولید داخلی به صورت زیر است:
- ایرالکو باتولید 120 هزارتن در سال (67%)
- المهدی با ظرفیت اسمی 110 هزار تن و تولید فعلی حدود 55هزارتن درسال (33%)در اسل 1972 میلادی ایران با تولید 45 هزارتن، 30درصد تولید منطقه را در اختیار داشت. سهم ایران از تولید آلومینیوم منطقه در سال 1993 به 2/16 درصد کاهش یافت . (120 هزارتن از 740 هزارتن تولید منطقه)
سهم ایران در تولید منطقه در سال 2002 بازهم کمتر و به 2/13 درصد رسیده است. (160 هزارتن از 1210 هزارتن) رسیدن به موقعیت برتر در تولید آلومینیوم در خلیجفارس نیازمند تلاش بیشتری است.
با توجه به اهمیت این صنعت واین فلز در جهان در این پایان نامه طرح آلومینیوم المهدی به عنوان مطالعه موردی انتخاب شده است. مجتمع آلومینیوم المهدی در سال 1369 تاسسیس در سال 1376 با 6 دیگ (3% ظرفیت اسمی) مورد بهرهبرداری قرار گرفته است. هدف از تاسیس موسسه ساخت کارخانه تولید شمش آلومینیوم با ظرفیت سالانه 220 هزارتن قابل توسعه به 330 هزارتن در سه فاز بوده است.
پایان نامه با بکارگیری قیمتهای بازار و همچنین قیمتهای محاسباتی، ارزیابی مالی و اقتصادی باری طرح انتخابی در این انجام میشود و نتایج مورد بررسی قرار میگیرد.
واقعیت در مورد تاکید در این پایان نامه این است که نشان دهد نرخ بازدهی داخلی (IRR) طرحها (طرحهایی که متولی انجام آن دولت است) در بسیاری از مواقع غیر واقعی است و نظام قیمتهای بازار به دلایلی که در پایان نامه مطرح خواهد شد پاسخگوی نیاز ارزشیابی طرحهای صنعتی نمیباشد و می بایستی تحریفهای موجود در بازار رفع شود.
ضرورت و اهداف تحقیق
تصمیمهای سرمایهگذاری بخش اساسی فراگرد توسعه را تشکیل میدهد. تصمیمگیری منطقی درباره طرحهای سرمایهگذاری بدون تردید موجب موفقیت و تحقق اهداف توسعه اقتصادی است.
محدود بودن منابع ایجاد میکند تا از منابع محدود بصورت بهینه استفاده شده و سرمایهها در مناسب ترین راه به کارگرفته شوند. عدم استفاده از سرمایه نه تنها سرمایهگذار را دچار فرصتهای از دست رفته مینماید، بلکه ممکن است او را بازیان غیرقابل جبران مواجه سازد. به منظور جلوگیری از این زیانها و استفاده بهینه از سرمایه لازم است هر طرح سرمایهگذاری قبل از اجرا با کمک ضوابط و معیارهای منطقی مورد ارزیابی گیرد.
مساله کمبود منابع در اقتصاد و انتخاب درست طرحهای صنعتی محتاج تحلیل علمی دراین مهم است و در اینجا است که اهمیت ارزیابی و نقش طرحهای صنعتی در اقتصاد ملی مطرح میگردد. بدین جهت استفاده از یکی از روشهای تحلیل هزینه – فایده که برای این منظور طراحی شده است در اقتصاد ما ضروری است.
با توجه به اینکه شرکت آلومینیوم المهدی در سال 1369 تاسیس شده است و در سال 1376 با 6 دیگ (3% ظرفیت اسمی) مورد بهرهبرداری قرارگرفته است و هدف از تاسیس این مجتمع ساخت کارخانه تولید شمش آلومینیوم با ظرفیت سالانه 220 هزارتن و قابل توسعه به 330 هزارتن در سال در سه فاز بوده است ولی اکنون تولید آن 55هزارتن درسال است و در ضمن با توجه به این امر که ارز اختصاصی به این صنعت به قیمت واقعی نمیباشد و با توجه به اینکه تولید آلومینیوم انرژی تخصیصی به این صنعت جهت تولید برق زیر 60 هزارتن در سال تولید داشته باشد از نظر اقتصادی به صرفه نخواهد بود، هدف از این پایان نامه تحلیل عملکرد این شرکت بوسیله شاخصهای مالی و اقتصادی میباشد، که مشخص میشود آیا با وجود ارز واقعی و انرژی به قیمت واقعی و … باز هم این طرح از نظر مالی و اقتصادی مقرون به صرفه هست یا خیر.
سوابق مربوطه:
بررسی تاریخچه هزینه – فایده و ارزیابی اقتصادی طرحهای وروشهای محاسبات آن با بررسی دیدگاههای مختلفی که تاکنون در این رابطه مطرح شدهاند انجام میشود. اگر بخواهیم ادبیات موجود در این زمینه و دیدگاههای توریک آن را بر پایه زمان مشخص نماییم، می توانیم به صورت خلاصه نمود:
- 1951 : دستور العمل سازمان ملل
- 1954 : دستورالعمل استانفورد
- 1958: سازمان ملل متعهد
- 1960: کتاب توسعه صنعتی
- 1968: سازمان همکاری و توسعه اقتصادی
- 1971: اقتصاد طرحهای منابع آب
- 1972: تحلیل اقتصادی بانک جهانی
- 1978: دستورالعمل تدوین مطالعات توجیهی طرحهای یونیدو
- 1980: ارزشیابی طرحهای صنعتی یونیدو
تا قبل از دهه 950 میلادی هیچگونه راهنمای مدونی برای تهیه و تنظیم روشهای ارزشیابی و بررسی امکان پذیری طرحهای عمرانی و سرمایه گذاری برای کشورهای درحال توسعه وجود نداشت. در سال 1951 با انتشار کتابی به عنوان تهیه و تنظیم روشهای ارزشیابی طرحهای عمرانی در دو جلد توسط سازمان ملل متحد، اولین کوششها به منظور مدونسازی دیدگاههای اقتصادی امکانپذر در مطالعات طرحها بوجود آمد. این مجموعه برای اولین بار شیوه سنجش (ارزشیابی) و گزینش (انتخاب) طرحها را براساس تحلیل هزینه – فایده طرح نمود. در سال 1951 موسسه پژوهشی استانفورد کتابی ار به عنوان دستور العمل توسعه صنعتی باکاربرد ویژه در کشورهای آمریکای لاتین به چاپ رساند. در این کتاب مبانی ارزشیابی و انتخاب طرحهای صنعتی در کشورهای در حال توسعه تشریح شده است. عناوین این کتاب شامل نکاتی است که برای تهیه و تنظیم مطالعات امکانپذیری اقتصادی یک طرح میبایستی مورد توجه قرار گیرد.
در سال 1958 سازمان ملل متحد کتابی به نام دستورالعمل طرحهای عمرانی را به چاپ رسانید که حاوی جمیع دیدگاههایی است که تاکنون تا آن تاریخ (سال 1958) درباره معیارها و ضوابط ارزشیابی طرحهای سرمایهگذاری بخش خصوصی و عمومی مطرح بوده است. چارچوب تعیین شده در این کتاب به گونهای است که علیرغم گذشت چهاردهه از آن تاریخ برای انجام مطالعات توجیهی طرحهای سرمایهگذاری اعم از بخش خصوصی و عمومی قابل استفاده است.
در سال 1960 سازمان همکاری و توسعه اقتصادی کتابی به عنوان دستورالعمل تحلیل طرحهای صنعتی در کشورهای در حال توسعة منتشر نمود. این کتاب دستورالعملی برای تهیه و تنظیم و ارزشیابی طرحهای صنعتی در کشورهای درحال توسعه است که در آن به مسایل سودآوری طرح از نقطهنظر سرمایهگذار وسودآوری تجاری طرح پرداخته میشود. این کتاب در بخش تحلیل هزینه - فایده اجتماعی یا به عبارت دیگر سودآوری اجتماعی نظراتی را از لیتل و میرلبس عنوان میکند. مسایل مربوط به قیمتهای محاسباتی و قیمتهای سایه هسته اصلی این نظریه را تشکیل میدهد.
در سال 1971 نظریاتی در مورد ارزشیابی طرحهای منابع آب و همچنین ارزشیابی اقتصادی طرحهای حمل و نقل از سوی کارشناسان بانک جهانی ارایه شد. در این چارچوب مبانی ارزشیابی اقتصادی طرحهای منابع آب و حمل و نقل با نگرش ویژه در کشورهای در حال توسعه ارایه گردیده است.
درسال 1972 کتاب تحلیل اقتصادی طرحهای کشاورزی توسط پاریسگی تینگر – موسسه توسعه اقتصادی بانک جهانی منتشر شد. این کتاب که راهنمایی به منظور کاربرد روش گردش نقدی تنزیل شده برای ارزشیابی و مقایسه و گزینش طرحهای مختلف است، گزینههای متفاوت انتخاب طرح برمبنای روش فوقالذکر را مورد آزمون قرار میدهد. بطوریکه از این سال به بعد (1972) قسمت اعظم دیدگاه بانک جهانی برای تحلیل طرحهای اقتصادی را این شیوه ارزیابی شکل میدهد.
در سال 1975 کتاب تحلیل اقتصادی طرحهای توسط بانک جهانی منتشر شد. پس از انتشار این کتاب بانک جهانی رسما شیوه مورد عمل در این کتاب را به عنوان روش یک بانک برای تحلیل اقتصادی طرحهای سرمایهگذاری اعلام نمود. این کتاب نیز همانند روشهای یونیدو و او – ای – سی - دی (اکو ) دارای یک نظام جامع برای تحلیل اقتصادی طرحهای سرمایهگذاری و تعیین قیمتهای محاسباتی منابع مورد نیاز محصول طرح می باشد.
در سال 1978 بونیدو مجددا کتاب دستورالعمل تدوین مطالعات توجیهی طرحهای صنعتی را به هدف تسهیل و بهبود شیوههای تهیه و تنظیم و تدوین مطالعات توجیهی طرحهای سرمایه گذاری صنعتی منتشر شد.
دسته بندی | شیمی |
فرمت فایل | docx |
حجم فایل | 345 کیلو بایت |
تعداد صفحات فایل | 12 |
پلیمرهای قالب مولکولی (Molecularly Imprinted Polymers) نانوسامانههای هوشمندی هستند که در حضور یک مولکول به عنوان الگو شکل میگیرند و میل شیمیایی اختصاصی و بالایی نسبت به مولکول الگو دارند و مکانیزم آنها شبیه آنتیبادیها یا آنزیمها است. از MIPها در ساخت آنتیبادی برای پروتئین، جداسازی در کروماتوگرافی، ساخت حسگرها، فرایندهای جداسازی و استخراج استفاده میشود. قالب مولکولی در سطح گستردهای به عنوان یک تکنیک مناسب است و دارای فواید آشکاری مانند آمادهسازی آسان، هزینهکم و استحکام شیمیایی و مکانیکی بالا میباشد. بنابراین ساخت MIPها به عنوان یک برنامه کاربردی وسیع میتواند جذب و جداسازی ترکیبات شیمیایی خاص در محیطهای حقیقی مانند آب، پساب، محیطزیست، سیستمهای زیستی، صنایع شیمیایی و پتروشیمیایی را فراهم ساخته و به عنوان حسگرهای زیستی و انتقال دارو مورد توجه قرار گیرد.
فهرست مطالب
چکیده. 3
مقدمه. 3
روش آمادهسازی .. 5
روشهای تعیین ویژگیهای .. 7
آنالیزهای جذب و واجذب... 8
کاربردهای .. 9
نتیجهگیری... 11
منابـــع و مراجــــع.. 12